Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1850(9): 1921-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26080001

RESUMEN

BACKGROUND: Equilibrative nucleoside transporters (ENTs) facilitate the import of nucleosides and their analogs into cells in a bidirectional, non-concentrative manner. However, in contrast to their name, most characterized plant ENTs act in a concentrative manner. A direct characterization of any ENT protein has been hindered due to difficulties in overexpression and obtaining pure recombinant protein. METHODS: The equilibrative nucleoside transporter 7 from Arabidopsis thaliana (AtENT7) was expressed in Xenopus laevis oocytes to assess mechanism of substrate uptake. Recombinant protein fused to enhanced green fluorescent protein (eGFP) was expressed in Pichia pastoris to characterize its oligomeric state by gel filtration and substrate binding by microscale thermophoresis (MST). RESULTS: AtENT7 expressed in X. laevis oocytes works as a classic equilibrative transporter. The expression of AtENT7-eGFP in the P. pastoris system yielded milligram amounts of pure protein that exists as stable homodimers. The concentration dependent binding of purine and pyrimidine nucleosides to the purified recombinant protein, assessed by MST, confirmed that AtENT7-eGFP is properly folded. For the first time the binding of nucleobases was observed for AtENT7. SIGNIFICANCE: The availability of pure recombinant AtENT7 will permit detailed kinetic and structural studies of this unique member of the ENT family and, given the functional similarity to mammalian ENTs, will serve as a good model for understanding the structural basis of translocation mechanism for the family.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Transporte de Nucleósido Equilibrativas/genética , Proteínas Recombinantes/biosíntesis , Animales , Proteínas de Transporte de Nucleósido Equilibrativas/aislamiento & purificación , Proteínas de Transporte de Nucleósido Equilibrativas/metabolismo , Oocitos , Xenopus laevis/genética
2.
J Exp Bot ; 62(13): 4627-37, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21642237

RESUMEN

ENT1 of Arabidopsis thaliana was the first member of the equilibrative nucleoside transporter (ENT) family to be identified in plants and characterized as a cellular, high-affinity nucleoside importer. Evidence is presented here for a tonoplast localization of ENT1 based on proteome data and Western blot analyses. Increased export of adenosine from reconstituted tonoplast preparations from 35S:ENT1 mutants compared with those from the wild type and ENT1-RNAi mutants support this view. Furthermore, increased vacuolar adenosine and vacuolar 2'3'-cAMP (an intermediate of RNA catabolism) contents in ENT1-RNAi mutants, but decreased contents of these metabolites in 35S:ENT1 over-expresser mutants, were observed. An up-regulation of the salvage pathway was detected in the latter mutants, leading to the conclusion that draining the vacuolar adenosine storage by ENT1 over-expression interferes with cellular nucleotide metabolism. As a consequence of the observed metabolic alterations 35S:ENT1 over-expresser mutants exhibited a smaller phenotypic appearance compared with wild-type plants. In addition, ENT1:RNAi mutants exhibited significantly lower in vitro germination of pollen and contained reduced internal and external ATP levels. This indicates that ENT1-mediated nucleosides, especially adenosine transport, is important for nucleotide metabolism, thus influencing growth and pollen germination.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Transporte de Nucleósido Equilibrativas/metabolismo , Tranportador Equilibrativo 1 de Nucleósido/metabolismo , Germinación/fisiología , Polen/crecimiento & desarrollo , Adenosina/metabolismo , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , AMP Cíclico/metabolismo , Proteínas de Transporte de Nucleósido Equilibrativas/genética , Tranportador Equilibrativo 1 de Nucleósido/genética , Espacio Extracelular/metabolismo , Regulación de la Expresión Génica de las Plantas , Espacio Intracelular/metabolismo , Modelos Biológicos , Mutación/genética , Especificidad de Órganos/genética , Polen/anatomía & histología , Polen/genética , Polen/fisiología , Transporte de Proteínas , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fracciones Subcelulares/metabolismo , Vacuolas/metabolismo
3.
Plant Cell ; 21(3): 876-91, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19293370

RESUMEN

Nucleoside degradation and salvage are important metabolic pathways but hardly understood in plants. Recent work on human pathogenic protozoans like Leishmania and Trypanosoma substantiates an essential function of nucleosidase activity. Plant nucleosidases are related to those from protozoans and connect the pathways of nucleoside degradation and salvage. Here, we describe the cloning of such an enzyme from Arabidopsis thaliana, Uridine-Ribohydrolase 1 (URH1) and the characterization by complementation of a yeast mutant. Furthermore, URH1 was synthesized as a recombinant protein in Escherichia coli. The pure recombinant protein exhibited highest hydrolase activity for uridine, followed by inosine and adenosine, the corresponding K(m) values were 0.8, 1.4, and 0.7 mM, respectively. In addition, URH1 was able to cleave the cytokinin derivative isopentenyladenine-riboside. Promoter beta-glucuronidase fusion studies revealed that URH1 is mainly transcribed in the vascular cells of roots and in root tips, guard cells, and pollen. Mutants expressing the Arabidopsis enzyme or the homolog from rice (Oryza sativa) exhibit resistance toward toxic fluorouridine, fluorouracil, and fluoroorotic acid, providing clear evidence for a pivotal function of URH1 as regulative in pyrimidine degradation. Moreover, mutants with increased and decreased nucleosidase activity are delayed in germination, indicating that this enzyme activity must be well balanced in the early phase of plant development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , N-Glicosil Hidrolasas/metabolismo , Uridina/metabolismo , Secuencia de Aminoácidos , Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Arginina/metabolismo , Prueba de Complementación Genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Mutación , N-Glicosil Hidrolasas/genética , Nitrógeno/metabolismo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
4.
Plant J ; 49(5): 855-64, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17253988

RESUMEN

The fluorouridine insensitive 1 (fur1) locus in Arabidopsis thaliana (L.) Heynh. has previously been identified in a screen for growth resistance towards the toxic compound fluorouridine. Mutation of this locus by ethylmethane sulfonate (EMS) allows mutants to grow on this uridine analogue. We identified that the A. thaliana equilibrative nucleoside transporter (AtENT3) was encoded by the fur1 locus. T-DNA insertional mutant plants for AtENT3 resemble the fur1 mutant phenotype: i.e. they grow on fluorouridine, and seedlings as well as leaf discs exhibit a markedly reduced uptake capacity for uridine and cytidine, but a less pronounced reduced uptake for adenosine and guanosine. These results indicate that AtENT3 is an important pyrimidine nucleoside transporter in Arabidopsis. In addition, we identified the mutation in fur1 as a single base-pair exchange, guanine --> adenine, leading to an amino acid exchange G --> R at position 281. Furthermore, we showed that this mutation is indeed responsible for the observed alterations in nucleoside transport in the fur1-1 line, because the introduction of this mutation in AtENT3 promoted fluorouridine resistance in yeast cells expressing this mutated protein. The biochemical characterization of AtENT3 expressed in Xenopus oocytes identified a proton-coupled concentrative mode of nucleoside transport, although this carrier possesses structural features characteristic for equilibrative nucleoside carriers.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Nucleósido Equilibrativas/genética , Animales , Transporte Biológico , Electrofisiología , Femenino , Regulación de la Expresión Génica de las Plantas , Mutagénesis Sitio-Dirigida , Oocitos , Uridina/análogos & derivados , Uridina/metabolismo , Xenopus
5.
Planta ; 223(2): 340-8, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16133207

RESUMEN

In previous experiments it was shown that Castor-bean (Ricinus communis) endosperm releases carbohydrates, amino acids and nucleoside derivatives, which are subsequently imported into the developing cotyledons (Kombrink and Beevers in Plant Physiol 73:370-376, 1983). To investigate the importance of the most prominent nucleoside adenosine for the metabolism of growing Ricinus seedlings, we supplied adenosine to cotyledons of 5-days-old seedlings after removal of the endosperm. This treatment led to a 16% increase in freshweight of intact seedlings within 16 h, compared to controls. Using detached cotyledons, we followed uptake of radiolabelled adenosine and identified 40% of label in solubles (mostly ATP and ADP), 46% incorporation in RNA and 2.5% in DNA, indicating a highly active salvage pathway. About 7% of freshly imported adenosine entered the phloem, which indicates a major function of adenosine for cotyledon metabolism. Import and conversion of adenosine improved the energy content of cotyledons as revealed by a substantially increased ATP/ADP ratio. This effect was accompanied by slight increases in respiratory activity, decreased levels of hexose phosphates and increased levels of fructose-1,6-bisphosphate and triose phosphates. These alterations indicate a stimulation of glycolytic flux by activation of phosphofructokinase, and accordingly we determined a higher activity of this enzyme. Furthermore the rate of [(14)C]-sucrose driven starch biosynthesis in developing castor-bean is significantly increased by feeding of adenosine. In conclusion, our data indicate that adenosine imported from mobilizing endosperm into developing castor-bean cotyledons fulfils an important function as it promotes anabolic reactions in this rapidly developing tissue.


Asunto(s)
Adenosina/fisiología , Ricinus communis/embriología , Almidón/biosíntesis , Adenosina/análisis , Adenosina/farmacología , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Dióxido de Carbono/metabolismo , Ricinus communis/efectos de los fármacos , Ricinus communis/metabolismo , Cotiledón/efectos de los fármacos , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , Metabolismo Energético , Activación Enzimática , Glucosafosfato Deshidrogenasa/metabolismo , Ácidos Nucleicos/biosíntesis , Oxígeno/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Transferasas/metabolismo
6.
Biochem J ; 383(Pt 1): 19-26, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15228386

RESUMEN

Research on metabolism of nucleotides and their derivatives has gained increasing interest in the recent past. This includes de novo synthesis, analysis of salvage pathways, breakdown and transport of nucleotides, nucleosides and nucleobases. To perform a further step towards the analysis of nucleoside transport in Arabidopsis, we incubated leaf discs with various radioactively labelled nucleosides. Leaf cells imported labelled nucleosides and incorporated these compounds into RNA, but not into DNA. Furthermore, we report on the biochemical properties of three so far uncharacterized members of the Arabidopsis ENT (equilibrative nucleoside transporter) family (AtENT4, AtENT6 and AtENT7). After heterologous expression in yeast, all three proteins exhibited broad substrate specificity and transported the purine nucleosides adenosine and guanosine, as well as the pyrimidine nucleosides cytidine and uridine. The apparent K(m) values were in the range 3-94 microM, and transport was inhibited most strongly by deoxynucleosides, and to a smaller extent by nucleobases. Typical inhibitors of mammalian ENT proteins, such as dilazep and NBMPR (nitrobenzylmercaptopurine ribonucleoside, also known as nitrobenzylthioinosine) surprisingly exerted almost no effect on Arabidopsis ENT proteins. Transport mediated by the AtENT isoforms differed in pH-dependency, e.g. AtENT7 was not affected by changes in pH, AtENT3, 4 and 6 exhibited a less pronounced pH-dependency, and AtENT1 activity was clearly pH-dependent. Using a GFP (green fluorescent protein)-fusion protein transiently expressed in tobacco leaf protoplasts, a localization of AtENT6 in the plant plasma membrane has been revealed.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Transporte de Nucleósido Equilibrativas/fisiología , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Proteínas de Transporte de Nucleósido Equilibrativas/antagonistas & inhibidores , Ionóforos/farmacología , Cinética , Hojas de la Planta/metabolismo , Nucleósidos de Purina/metabolismo , Nucleósidos de Pirimidina/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Fracciones Subcelulares/metabolismo , Especificidad por Sustrato , Vasodilatadores/farmacología
7.
Proc Natl Acad Sci U S A ; 100(19): 11122-6, 2003 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-12947042

RESUMEN

Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in the past to identify the vacuolar malate transporter; here, we describe the identification of the vacuolar malate transporter [A. thaliana tonoplast dicarboxylate transporter (AttDT)]. This transporter exhibits highest sequence similarity to the human sodium/dicarboxylate cotransporter. Independent T-DNA [portion of the Ti (tumor-inducing) plasmid that is transferred to plant cells] Arabidopsis mutants exhibit substantially reduced levels of leaf malate, but respire exogenously applied [14C]malate faster than the WT. An AttDT-GFP fusion protein was localized to vacuole. Vacuoles isolated from Arabidopsis WT leaves exhibited carbonylcyanide m-chlorophenylhydrazone and citrate inhibitable malate transport, which was not stimulated by sodium. Vacuoles isolated from mutant plants import [14C]-malate at strongly reduced rates, confirming that this protein is the vacuolar malate transporter.


Asunto(s)
Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Malatos/metabolismo , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , Humanos , Microscopía Fluorescente , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA