Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 24(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37239854

RESUMEN

Microglia, the resident immune cells of the central nervous system, play important roles in brain homeostasis as well as in neuroinflammation, neurodegeneration, neurovascular diseases, and traumatic brain injury. In this context, components of the endocannabinoid (eCB) system have been shown to shift microglia towards an anti-inflammatory activation state. Instead, much less is known about the functional role of the sphingosine kinase (SphK)/sphingosine-1-phosphate (S1P) system in microglia biology. In the present study, we addressed potential crosstalk of the eCB and the S1P systems in BV2 mouse microglia cells challenged with lipopolysaccharide (LPS). We show that URB597, the selective inhibitor of fatty acid amide hydrolase (FAAH)-the main degradative enzyme of the eCB anandamide-prevented LPS-induced production of tumor necrosis factor-α (TNFα) and interleukin-1ß (IL-1ß), and caused the accumulation of anandamide itself and eCB-like molecules such as oleic acid and cis-vaccenic acid ethanolamide, palmitoylethanolamide, and docosahexaenoyl ethanolamide. Furthermore, treatment with JWH133, a selective agonist of the eCB-binding cannabinoid 2 (CB2) receptor, mimicked the anti-inflammatory effects of URB597. Interestingly, LPS induced transcription of both SphK1 and SphK2, and the selective inhibitors of SphK1 (SLP7111228) and SphK2 (SLM6031434) strongly reduced LPS-induced TNFα and IL-1ß production. Thus, the two SphKs were pro-inflammatory in BV2 cells in a non-redundant manner. Most importantly, the inhibition of FAAH by URB597, as well as the activation of CB2 by JWH133, prevented LPS-stimulated transcription of SphK1 and SphK2. These results present SphK1 and SphK2 at the intersection of pro-inflammatory LPS and anti-inflammatory eCB signaling, and suggest the further development of inhibitors of FAAH or SphKs for the treatment of neuroinflammatory diseases.


Asunto(s)
Endocannabinoides , Factor de Necrosis Tumoral alfa , Ratones , Animales , Factor de Necrosis Tumoral alfa/farmacología , Endocannabinoides/farmacología , Lipopolisacáridos/farmacología , Microglía , Esfingosina/farmacología , Antiinflamatorios/farmacología
2.
J Integr Neurosci ; 21(6): 161, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36424740

RESUMEN

BACKGROUND: Cardiovascular diseases like stroke cause changes to sphingolipid mediators like sphingosine 1-phosphate (S1P) or its ceramide analogs, which bear the potential to either alleviate or exacerbate the neurological damage. Therefore, the precise identification of alterations within the sphingolipidome during ischemic stroke (IS) and hemorrhagic transformation (HT) harbors a putative therapeutic potential to orchestrate local and systemic immunomodulatory processes. Due to the scarcity of research in this field, we aimed to characterize the sphingolipidome in IS and HT. METHODS: C57BL/6 mice underwent middle cerebral artery occlusion (MCAO) and specimens of the peri-infarct tissue were taken for sphingolipid profiling. RESULTS: Ischemic stroke resulted in reduced S1P whilst ceramides were elevated six hours post ischemia onset. However, these differences were nearly revoked at 24 hours post ischemia onset. Moreover, the topmost S1P and ceramide levels were linked to the presence of HT after MCAO. In this study we show the characterization of the sphingolipidomic landscape of the peri-infarct tissue after ischemic stroke and HT. Especially, highest values of S1P, C 18 lactosylceramide, C 18 glucosylceramide, and C 24:1 ceramide were nearly entirely expressed by mice with HT. CONCLUSIONS: Our results warrant further investigations into the immunomodulatory consequences of altered sphingolipid species for the development of HT after IS.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Ratones Endogámicos C57BL , Isquemia Encefálica/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/complicaciones , Modelos Animales de Enfermedad , Esfingolípidos/uso terapéutico , Ceramidas/uso terapéutico
3.
Int J Mol Sci ; 23(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35682566

RESUMEN

Erythropoietin (Epo) is a crucial hormone regulating red blood cell number and consequently the hematocrit. Epo is mainly produced in the kidney by interstitial fibroblast-like cells. Previously, we have shown that in cultures of the immortalized mouse renal fibroblast-like cell line FAIK F3-5, sphingosine 1-phosphate (S1P), by activating S1P1 and S1P3 receptors, can stabilize hypoxia-inducible factor (HIF)-2α and upregulate Epo mRNA and protein synthesis. In this study, we have addressed the role of intracellular iS1P derived from sphingosine kinases (Sphk) 1 and 2 on Epo synthesis in F3-5 cells and in mouse primary cultures of renal fibroblasts. We show that stable knockdown of Sphk2 in F3-5 cells increases HIF-2α protein and Epo mRNA and protein levels, while Sphk1 knockdown leads to a reduction of hypoxia-stimulated HIF-2α and Epo protein. A similar effect was obtained using primary cultures of renal fibroblasts isolated from wildtype mice, Sphk1-/-, or Sphk2-/- mice. Furthermore, selective Sphk2 inhibitors mimicked the effect of genetic Sphk2 depletion and also upregulated HIF-2α and Epo protein levels. The combined blockade of Sphk1 and Sphk2, using Sphk2-/- renal fibroblasts treated with the Sphk1 inhibitor PF543, resulted in reduced HIF-2α and Epo compared to the untreated Sphk2-/- cells. Exogenous sphingosine (Sph) enhanced HIF-2α and Epo, and this was abolished by the combined treatment with the selective S1P1 and S1P3 antagonists NIBR-0213 and TY52156, suggesting that Sph was taken up by cells and converted to iS1P and exported to then act in an autocrine manner through S1P1 and S1P3. The upregulation of HIF-2α and Epo synthesis by Sphk2 knockdown was confirmed in the human hepatoma cell line Hep3B, which is well-established to upregulate Epo production under hypoxia. In summary, these data show that sphingolipids have diverse effects on Epo synthesis. While accumulation of intracellular Sph reduces Epo synthesis, iS1P will be exported to act through S1P1+3 to enhance Epo synthesis. Furthermore, these data suggest that selective inhibition of Sphk2 is an attractive new option to enhance Epo synthesis and thereby to reduce anemia development in chronic kidney disease.


Asunto(s)
Eritropoyetina , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Epoetina alfa , Eritropoyetina/genética , Eritropoyetina/metabolismo , Fibroblastos/metabolismo , Hipoxia , Riñón/metabolismo , Ratones , ARN Mensajero/genética , Esfingosina/metabolismo
4.
Front Aging Neurosci ; 14: 876826, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572151

RESUMEN

A causal contribution of hyperhomocysteinemia to cognitive decline and Alzheimer's disease (AD), as well as potential prevention or mitigation of the pathology by dietary intervention, have frequently been subjects of controversy. In the present in vivo study, we attempted to further elucidate the impact of elevated homocysteine (HCys) and homocysteic acid (HCA) levels, induced by dietary B-vitamin deficiency, and micronutrient supplementation on AD-like pathology, which was simulated using the amyloid-based AppNL-G-F knock-in mouse model. For this purpose, cognitive assessment was complemented by analyses of ex vivo parameters in whole blood, serum, CSF, and brain tissues from the mice. Furthermore, neurotoxicity of HCys and HCA was assessed in a separate in vitro assay. In confirmation of our previous study, older AppNL-G-F mice also exhibited subtle phenotypic impairment and extensive cerebral amyloidosis, whereas dietary manipulations did not result in significant effects. As revealed by proximity extension assay-based proteome analysis, the AppNL-G-F genotype led to an upregulation of AD-characteristic neuronal markers. Hyperhomocysteinemia, in contrast, indicated mainly vascular effects. Overall, since there was an absence of a distinct phenotype despite both a significant amyloid-ß burden and serum HCys elevation, the results in this study did not corroborate the pathological role of amyloid-ß according to the "amyloid hypothesis," nor of hyperhomocysteinemia on cognitive performance. Nevertheless, this study aided in further characterizing the AppNL-G-F model and in elucidating the role of HCys in diverse biological processes. The idea of AD prevention with the investigated micronutrients, however, was not supported, at least in this mouse model of the disease.

5.
FEBS J ; 289(18): 5670-5681, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35320610

RESUMEN

Sphingosine 1-phosphate (S1P) is a lipid mediator with numerous biological functions. The term 'S1P' mainly refers to the sphingolipid molecule with a long-chain sphingoid base of 18 carbon atoms, d18:1 S1P. The enzyme serine palmitoyltransferase catalyses the first step of the sphingolipid de novo synthesis using palmitoyl-CoA as the main substrate. After further reaction steps, d18:1 S1P is generated. However, also stearyl-CoA or myristoyl-CoA can be utilised by the serine palmitoyltransferase, which at the end of the S1P synthesis pathway, results in the production of d20:1 S1P and d16:1 S1P respectively. We measured these S1P homologues in mice and renal tissue of patients suffering from renal cell carcinoma (RCC). Our experiments highlight the relevance of d16:1 S1P for the induction of connective tissue growth factor (CTGF) in the human renal clear cell carcinoma cell line A498 and human RCC tissue. We show that d16:1 S1P versus d18:1 and d20:1 S1P leads to the highest CTGF induction in A498 cells via S1P2 signalling and that both d16:1 S1P and CTGF levels are elevated in RCC compared to adjacent healthy tissue. Our data indicate that d16:1 S1P modulates conventional S1P signalling by acting as a more potent agonist at the S1P2 receptor than d18:1 S1P. We suggest that elevated plasma levels of d16:1 S1P might play a pro-carcinogenic role in the development of RCC via CTGF induction.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Carbono , Carcinoma de Células Renales/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , Humanos , Neoplasias Renales/genética , Lisofosfolípidos/metabolismo , Ratones , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Serina C-Palmitoiltransferasa , Esfingolípidos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
6.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35163788

RESUMEN

To better understand the role of sphingolipids in the multifactorial process of inflammatory bowel disease (IBD), we elucidated the role of CerS4 in colitis and colitis-associated cancer (CAC). For this, we utilized the azoxymethane/dextran sodium sulphate (AOM/DSS)-induced colitis model in global CerS4 knockout (CerS4 KO), intestinal epithelial (CerS4 Vil/Cre), or T-cell restricted knockout (CerS4 LCK/Cre) mice. CerS4 KO mice were highly sensitive to the toxic effect of AOM/DSS, leading to a high mortality rate. CerS4 Vil/Cre mice had smaller tumors than WT mice. In contrast, CerS4 LCK/Cre mice frequently suffered from pancolitis and developed more colon tumors. In vitro, CerS4-depleted CD8+ T-cells isolated from the thymi of CerS4 LCK/Cre mice showed impaired proliferation and prolonged cytokine production after stimulation in comparison with T-cells from WT mice. Depletion of CerS4 in human Jurkat T-cells led to a constitutively activated T-cell receptor and NF-κB signaling pathway. In conclusion, the deficiency of CerS4 in T-cells led to an enduring active status of these cells and prevents the resolution of inflammation, leading to a higher tumor burden in the CAC mouse model. In contrast, CerS4 deficiency in epithelial cells resulted in smaller colon tumors and seemed to be beneficial. The higher tumor incidence in CerS4 LCK/Cre mice and the toxic effect of AOM/DSS in CerS4 KO mice exhibited the importance of CerS4 in other tissues and revealed the complexity of general targeting CerS4.


Asunto(s)
Azoximetano/efectos adversos , Neoplasias Asociadas a Colitis/patología , Neoplasias del Colon/patología , Sulfato de Dextran/efectos adversos , Esfingosina N-Aciltransferasa/genética , Linfocitos T/metabolismo , Animales , Neoplasias Asociadas a Colitis/inducido químicamente , Neoplasias Asociadas a Colitis/genética , Neoplasias Asociadas a Colitis/inmunología , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/genética , Neoplasias del Colon/inmunología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Células Jurkat , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Especificidad de Órganos , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Carga Tumoral
7.
J Neurosci ; 42(10): 1908-1929, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34903569

RESUMEN

The precise regulation of blood-brain barrier (BBB) permeability for immune cells and blood-borne substances is essential to maintain brain homeostasis. Sphingosine-1-phosphate (S1P), a lipid signaling molecule enriched in plasma, is known to affect BBB permeability. Previous studies focused on endothelial S1P receptors 1 and 2, reporting a barrier-protective effect of S1P1 and a barrier-disruptive effect of S1P2. Here, we present novel data characterizing the expression, localization, and function of the S1P receptor 4 (S1P4) on primary brain microvascular endothelial cells (BMECs). Hitherto, the receptor was deemed to be exclusively immune cell associated. We detected a robust expression of S1P4 in homeostatic murine BMECs (MBMECs), bovine BMECs (BBMECs), and porcine BMECs (PBMECs) and pinpointed its localization to abluminal endothelial membranes via immunoblotting of fractionated brain endothelial membrane fragments. Apical S1P treatment of BMECs tightened the endothelial barrier in vitro, whereas basolateral S1P treatment led to an increased permeability that correlated with S1P4 downregulation. Likewise, downregulation of S1P4 was observed in mouse brain microvessels (MBMVs) after stroke, a neurologic disease associated with BBB impairment. RNA sequencing and qPCR analysis of BMECs suggested the involvement of S1P4 in endothelial homeostasis and barrier function. Using S1P4 knock-out (KO) mice and S1P4 siRNA as well as pharmacological agonists and antagonists of S1P4 both in vitro and in vivo, we demonstrate an overall barrier-protective function of S1P4. We therefore suggest S1P4 as a novel target regulating BBB permeability and propose its therapeutic potential in CNS diseases associated with BBB dysfunction.SIGNIFICANCE STATEMENT Many neurologic diseases including multiple sclerosis and stroke are associated with blood-brain barrier (BBB) impairment and disturbed brain homeostasis. Sphingosine-1-phosphate receptors (S1PRs) are potent regulators of endothelial permeability and pharmacological S1PR modulators are already in clinical use. However, the precise role of S1P for BBB permeability regulation and the function of receptors other than S1P1 and S1P2 therein are still unclear. Our study shows both barrier-disruptive and barrier-protective effects of S1P at the BBB that depend on receptor polarization. We demonstrate the expression and novel barrier-protective function of S1P4 in brain endothelial cells and pinpoint its localization to abluminal membranes. Our work may contribute to the development of novel specific S1PR modulators for the treatment of neurologic diseases associated with BBB impairment.


Asunto(s)
Barrera Hematoencefálica , Receptores de Esfingosina-1-Fosfato , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/metabolismo , Bovinos , Células Endoteliales/metabolismo , Homeostasis , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Ratones , Ratones Noqueados , Permeabilidad , Fenotipo , Receptores de Lisoesfingolípidos/genética , Esfingosina/metabolismo , Esfingosina/farmacología , Receptores de Esfingosina-1-Fosfato/metabolismo , Accidente Cerebrovascular/metabolismo , Porcinos
8.
Nutrients ; 13(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34836380

RESUMEN

Progranulin deficiency in mice is associated with deregulations of the scavenger receptor signaling of CD36/SCARB3 in immune disease models, and CD36 is a dominant receptor in taste bud cells in the tongue and contributes to the sensation of dietary fats. Progranulin-deficient mice (Grn-/-) are moderately overweight during middle age. We therefore asked if there was a connection between progranulin/CD36 in the tongue and fat taste preferences. By using unbiased behavioral analyses in IntelliCages and Phenomaster cages we showed that progranulin-deficient mice (Grn-/-) developed a strong preference of fat taste in the form of 2% milk over 0.3% milk, and for diluted MCTs versus tap water. The fat preference in the 7d-IntelliCage observation period caused an increase of 10% in the body weight of Grn-/- mice, which did not occur in the wildtype controls. CD36 expression in taste buds was reduced in Grn-/- mice at RNA and histology levels. There were no differences in the plasma or tongue lipids of various classes including sphingolipids, ceramides and endocannabinoids. The data suggest that progranulin deficiency leads to a lower expression of CD36 in the tongue resulting in a stronger urge for fatty taste and fatty nutrition.


Asunto(s)
Antígenos CD36/metabolismo , Grasas de la Dieta , Preferencias Alimentarias/fisiología , Progranulinas/metabolismo , Papilas Gustativas/metabolismo , Gusto/fisiología , Aumento de Peso , Animales , Femenino , Lípidos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Leche/química , Obesidad/etiología , Obesidad/metabolismo , Receptores Depuradores/metabolismo , Percepción del Gusto
9.
Cell Mol Life Sci ; 78(21-22): 7025-7041, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34626204

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most difficult cancer types to treat. Liver cancer is often diagnosed at late stages and therapeutic treatment is frequently accompanied by development of multidrug resistance. This leads to poor outcomes for cancer patients. Understanding the fundamental molecular mechanisms leading to liver cancer development is crucial for developing new therapeutic approaches, which are more efficient in treating cancer. Mice with a liver specific UDP-glucose ceramide glucosyltransferase (UGCG) knockout (KO) show delayed diethylnitrosamine (DEN)-induced liver tumor growth. Accordingly, the rationale for our study was to determine whether UGCG overexpression is sufficient to drive cancer phenotypes in liver cells. We investigated the effect of UGCG overexpression (OE) on normal murine liver (NMuLi) cells. Increased UGCG expression results in decreased mitochondrial respiration and glycolysis, which is reversible by treatment with EtDO-P4, an UGCG inhibitor. Furthermore, tumor markers such as FGF21 and EPCAM are lowered following UGCG OE, which could be related to glucosylceramide (GlcCer) and lactosylceramide (LacCer) accumulation in glycosphingolipid-enriched microdomains (GEMs) and subsequently altered signaling protein phosphorylation. These cellular processes lead to decreased proliferation in NMuLi/UGCG OE cells. Our data show that increased UGCG expression itself does not induce pro-cancerous processes in normal liver cells, which indicates that increased GlcCer expression leads to different outcomes in different cancer types.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Metabolismo Energético/fisiología , Glucosilceramidas/metabolismo , Hígado/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular , Resistencia a Múltiples Medicamentos/fisiología , Glucosiltransferasas/metabolismo , Glucólisis/fisiología , Glicoesfingolípidos/metabolismo , Neoplasias Hepáticas/metabolismo , Ratones , Mitocondrias/metabolismo , Transducción de Señal/fisiología
10.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638955

RESUMEN

Sphingosine 1 phosphate (S1P) lyase (Sgpl1) catalyses the irreversible cleavage of S1P and thereby the last step of sphingolipid degradation. Loss of Sgpl1 in humans and mice leads to accumulation of sphingolipids and multiple organ injuries. Here, we addressed the role of hepatocyte Sgpl1 for regulation of sphingolipid homoeostasis by generating mice with hepatocyte-specific deletion of Sgpl1 (Sgpl1HepKO mice). Sgpl1HepKO mice had normal body weight, liver weight, liver structure and liver enzymes both at the age of 8 weeks and 8 months. S1P, sphingosine and ceramides, but not glucosylceramides or sphingomyelin, were elevated by ~1.5-2-fold in liver, and this phenotype did not progress with age. Several ceramides were elevated in plasma, while plasma S1P was normal. Interestingly, S1P and glucosylceramides, but not ceramides, were elevated in bile of Sgpl1HepKO mice. Furthermore, liver cholesterol was elevated, while LDL cholesterol decreased in 8-month-old mice. In agreement, the LDL receptor was upregulated, suggesting enhanced uptake of LDL cholesterol. Expression of peroxisome proliferator-activated receptor-γ, liver X receptor and fatty acid synthase was unaltered. These data show that mouse hepatocytes largely compensate the loss of Sgpl1 by secretion of accumulating sphingolipids in a specific manner into blood and bile, so that they can be excreted or degraded elsewhere.


Asunto(s)
Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Bilis/metabolismo , Hígado/metabolismo , Esfingolípidos/sangre , Animales , Células Cultivadas , Ceramidas/metabolismo , LDL-Colesterol/metabolismo , Técnicas de Inactivación de Genes , Hepatocitos/metabolismo , Homeostasis/genética , Lisofosfolípidos/metabolismo , Ratones , Ratones Noqueados , Fenotipo , Receptores de LDL/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
11.
Biomedicines ; 9(9)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34572359

RESUMEN

Genes encoding endocannabinoid and sphingolipid metabolism pathways were suggested to contribute to the genetic risk towards attention deficit hyperactivity disorder (ADHD). The present pilot study assessed plasma concentrations of candidate endocannabinoids, sphingolipids and ceramides in individuals with adult ADHD in comparison with healthy controls and patients with affective disorders. Targeted lipid analyses of 23 different lipid species were performed in 71 mental disorder patients and 98 healthy controls (HC). The patients were diagnosed with adult ADHD (n = 12), affective disorder (major depression, MD n = 16 or bipolar disorder, BD n = 6) or adult ADHD with comorbid affective disorders (n = 37). Canonical discriminant analysis and CHAID analyses were used to identify major components that predicted the diagnostic group. ADHD patients had increased plasma concentrations of sphingosine-1-phosphate (S1P d18:1) and sphinganine-1-phosphate (S1P d18:0). In addition, the endocannabinoids, anandamide (AEA) and arachidonoylglycerol were increased. MD/BD patients had increased long chain ceramides, most prominently Cer22:0, but low endocannabinoids in contrast to ADHD patients. Patients with ADHD and comorbid affective disorders displayed increased S1P d18:1 and increased Cer22:0, but the individual lipid levels were lower than in the non-comorbid disorders. Sphingolipid profiles differ between patients suffering from ADHD and affective disorders, with overlapping patterns in comorbid patients. The S1P d18:1 to Cer22:0 ratio may constitute a diagnostic or prognostic tool.

12.
Neuropathol Appl Neurobiol ; 47(7): 1060-1079, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33974284

RESUMEN

AIMS: Parkinson's disease (PD) is frequently associated with a prodromal sensory neuropathy manifesting with sensory loss and chronic pain. We have recently shown that PD-associated sensory neuropathy in patients is associated with high levels of glucosylceramides. Here, we assessed the underlying pathology and mechanisms in Pink1-/- SNCAA53T double mutant mice. METHODS: We studied nociceptive and olfactory behaviour and the neuropathology of dorsal root ganglia (DRGs), including ultrastructure, mitochondrial respiration, transcriptomes, outgrowth and calcium currents of primary neurons, and tissue ceramides and sphingolipids before the onset of a PD-like disease that spontaneously develops in Pink1-/- SNCAA53T double mutant mice beyond 15 months of age. RESULTS: Similar to PD patients, Pink1-/- SNCAA53T mice developed a progressive prodromal sensory neuropathy with a loss of thermal sensitivity starting as early as 4 months of age. In analogy to human plasma, lipid analyses revealed an accumulation of glucosylceramides (GlcCer) in the DRGs and sciatic nerves, which was associated with pathological mitochondria, impairment of mitochondrial respiration, and deregulation of transient receptor potential channels (TRPV and TRPA) at mRNA, protein and functional levels in DRGs. Direct exposure of DRG neurons to GlcCer caused transient hyperexcitability, followed by a premature decline of the viability of sensory neurons cultures upon repeated GlcCer application. CONCLUSIONS: The results suggest that pathological GlcCer contribute to prodromal sensory disease in PD mice via mitochondrial damage and calcium channel hyperexcitability. GlcCer-associated sensory neuron pathology might be amenable to GlcCer lowering therapeutic strategies.


Asunto(s)
Mutación/genética , Enfermedad de Parkinson/genética , Proteínas Quinasas/genética , alfa-Sinucleína/genética , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Mitocondrias/genética , Mitocondrias/metabolismo , Neuronas/patología , Enfermedad de Parkinson/patología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/patología , Proteínas Quinasas/deficiencia , alfa-Sinucleína/metabolismo
13.
Neurotherapeutics ; 18(3): 1862-1879, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33844153

RESUMEN

Depletion of the enzyme cofactor, tetrahydrobiopterin (BH4), in T-cells was shown to prevent their proliferation upon receptor stimulation in models of allergic inflammation in mice, suggesting that BH4 drives autoimmunity. Hence, the clinically available BH4 drug (sapropterin) might increase the risk of autoimmune diseases. The present study assessed the implications for multiple sclerosis (MS) as an exemplary CNS autoimmune disease. Plasma levels of biopterin were persistently low in MS patients and tended to be lower with high Expanded Disability Status Scale (EDSS). Instead, the bypass product, neopterin, was increased. The deregulation suggested that BH4 replenishment might further drive the immune response or beneficially restore the BH4 balances. To answer this question, mice were treated with sapropterin in immunization-evoked autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. Sapropterin-treated mice had higher EAE disease scores associated with higher numbers of T-cells infiltrating the spinal cord, but normal T-cell subpopulations in spleen and blood. Mechanistically, sapropterin treatment was associated with increased plasma levels of long-chain ceramides and low levels of the poly-unsaturated fatty acid, linolenic acid (FA18:3). These lipid changes are known to contribute to disruptions of the blood-brain barrier in EAE mice. Indeed, RNA data analyses revealed upregulations of genes involved in ceramide synthesis in brain endothelial cells of EAE mice (LASS6/CERS6, LASS3/CERS3, UGCG, ELOVL6, and ELOVL4). The results support the view that BH4 fortifies autoimmune CNS disease, mechanistically involving lipid deregulations that are known to contribute to the EAE pathology.


Asunto(s)
Biopterinas/análogos & derivados , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/inmunología , Adolescente , Adulto , Anciano , Animales , Biopterinas/administración & dosificación , Biopterinas/sangre , Biopterinas/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/metabolismo , Células Cultivadas , Estudios Transversales , Encefalomielitis Autoinmune Experimental/sangre , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Esclerosis Múltiple/inmunología , Neopterin/sangre , Adulto Joven
14.
iScience ; 24(4): 102266, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33817572

RESUMEN

Ebola virus (EBOV) is responsible for outbreaks with case fatality rates of up to 90% and for an epidemic in West Africa with more than ten thousand deaths. EBOV glycoprotein (EBOV-GP) is the only viral surface protein and is responsible for viral entry into cells. Here, by employing pseudotyped EBOV-GP viral particles, we uncover a critical role for sphingolipids in inhibiting viral entry. Sphingosine kinase 1 (SphK1) catalyzes the phosphorylation of sphingosine to sphingosine 1-phosphate (S1P). The administration of the SphK1 activator, K6PC-5, or S1P, or the overexpression of SphK1 consistently exhibited striking inhibitory effects in EBOV-GP-driven entry in diverse cell lines. Finally, K6PC-5 markedly reduced the EBOV titer in infected cells and the de novo production of viral proteins. These data present K6PC-5 as an efficient tool to inhibit EBOV infection in endothelial cells and suggest further studies to evaluate its systemic effects.

15.
Autophagy ; 17(11): 3424-3443, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33461384

RESUMEN

Increasing evidence suggests that induction of lethal macroautophagy/autophagy carries potential significance for the treatment of glioblastoma (GBM). In continuation of previous work, we demonstrate that pimozide and loperamide trigger an ATG5- and ATG7 (autophagy related 5 and 7)-dependent type of cell death that is significantly reduced with cathepsin inhibitors and the lipid reactive oxygen species (ROS) scavenger α-tocopherol in MZ-54 GBM cells. Global proteomic analysis after treatment with both drugs also revealed an increase of proteins related to lipid and cholesterol metabolic processes. These changes were accompanied by a massive accumulation of cholesterol and other lipids in the lysosomal compartment, indicative of impaired lipid transport/degradation. In line with these observations, pimozide and loperamide treatment were associated with a pronounced increase of bioactive sphingolipids including ceramides, glucosylceramides and sphingoid bases measured by targeted lipidomic analysis. Furthermore, pimozide and loperamide inhibited the activity of SMPD1/ASM (sphingomyelin phosphodiesterase 1) and promoted induction of lysosomal membrane permeabilization (LMP), as well as release of CTSB (cathepsin B) into the cytosol in MZ-54 wild-type (WT) cells. Whereas LMP and cell death were significantly attenuated in ATG5 and ATG7 knockout (KO) cells, both events were enhanced by depletion of the lysophagy receptor VCP (valosin containing protein), supporting a pro-survival function of lysophagy under these conditions. Collectively, our data suggest that pimozide and loperamide-driven autophagy and lipotoxicity synergize to induce LMP and cell death. The results also support the notion that simultaneous overactivation of autophagy and induction of LMP represents a promising approach for the treatment of GBM.Abbreviations: ACD: autophagic cell death; AKT1: AKT serine/threonine kinase 1; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG14: autophagy related 14; CERS1: ceramide synthase 1; CTSB: cathepsin B; CYBB/NOX2: cytochrome b-245 beta chain; ER: endoplasmatic reticulum; FBS: fetal bovine serum; GBM: glioblastoma; GO: gene ontology; HTR7/5-HT7: 5-hydroxytryptamine receptor 7; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAP: LC3-associated phagocytosis; LMP: lysosomal membrane permeabilization; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; RB1CC1: RB1 inducible coiled-coil 1; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SMPD1/ASM: sphingomyelin phosphodiesterase 1; VCP/p97: valosin containing protein; WT: wild-type.


Asunto(s)
Autofagia/efectos de los fármacos , Autofagia/fisiología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Loperamida/farmacología , Pimozida/farmacología , Proteína 5 Relacionada con la Autofagia/antagonistas & inhibidores , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/antagonistas & inhibidores , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Neoplasias Encefálicas/metabolismo , Catepsinas/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Línea Celular Tumoral , Ceramidas/metabolismo , Técnicas de Inactivación de Genes , Glioblastoma/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Permeabilidad/efectos de los fármacos , Proteoma/metabolismo , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/metabolismo
16.
Cancers (Basel) ; 13(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33450826

RESUMEN

Cutaneous T cell lymphomas (CTCLs) represent a heterogeneous group of T cell lymphomas that primarily affect the skin. The most frequent forms of CTCL are mycosis fungoides and Sézary syndrome. Both are characterized by frequent recurrence, developing chronic conditions and high mortality with a lack of a curative treatment. In this study, we evaluated the effect of short-chain, cell-permeable C6 Ceramide (C6Cer) on CTCL cell lines and keratinocytes. C6Cer significantly reduced cell viability of CTCL cell lines and induced cell death via apoptosis and necrosis. In contrast, primary human keratinocytes and HaCaT keratinocytes were less affected by C6Cer. Both keratinocyte cell lines showed higher expressions of ceramide catabolizing enzymes and HaCaT keratinocytes were able to metabolize C6Cer faster and more efficiently than CTCL cell lines, which might explain the observed protective effects. Along with other existing skin-directed therapies, C6Cer could be a novel well-tolerated drug for the topical treatment of CTCL.

17.
Artículo en Inglés | MEDLINE | ID: mdl-33010454

RESUMEN

BACKGROUND: Several studies revealed alterations of single sphingolipid species, such as chain length-specific ceramides, in plasma and serum of patients with kidney diseases. Here, we investigated whether such alterations occur in kidney tissue from patients and mice suffering from renal fibrosis, the common endpoint of chronic kidney diseases. METHODS: Human fibrotic kidney samples were collected from nephrectomy specimens with hydronephrosis and/or pyelonephritis. Healthy parts from tumor nephrectomies served as nonfibrotic controls. Mouse fibrotic kidney samples were collected from male C57BL/6J mice treated with an adenine-rich diet for 14 days or were subjected to 7 days of unilateral ureteral obstruction (UUO). Kidneys of untreated mice and contralateral kidneys (UUO) served as respective controls. Sphingolipid levels were detected by LC-MS/MS. Fibrotic markers were analyzed by TaqMan® analysis and immunohistology. RESULTS: Very long-chain ceramides Cer d18:1/24:0 and Cer d18:1/24:1 were significantly downregulated in both fibrotic human kidney cortex and fibrotic murine kidney compared to respective control samples. These effects correlate with upregulation of COL1α1, COL3α1 and αSMA expression in fibrotic human kidney cortex and fibrotic mouse kidney. CONCLUSION: We have shown that very long-chain ceramides Cer d18:1/24:0 and Cer d18:1/24:1 are consistently downregulated in fibrotic kidney samples from human and mouse. Our findings support the use of in vivo murine models as appropriate translational means to understand the involvement of ceramides in human kidney diseases. In addition, our study raises interesting questions about the possible manipulation of ceramide metabolism to prevent progression of fibrosis and the use of ceramides as potential biomarkers of chronic kidney disease.


Asunto(s)
Ceramidas/metabolismo , Hidronefrosis/metabolismo , Pielonefritis/metabolismo , Esfingolípidos/metabolismo , Obstrucción Ureteral/metabolismo , Actinas/genética , Actinas/metabolismo , Adenina/administración & dosificación , Anciano , Animales , Biomarcadores/metabolismo , Ceramidas/clasificación , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrosis , Regulación de la Expresión Génica , Humanos , Hidronefrosis/inducido químicamente , Hidronefrosis/genética , Hidronefrosis/patología , Riñón/metabolismo , Riñón/patología , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Pielonefritis/inducido químicamente , Pielonefritis/genética , Pielonefritis/patología , Esfingolípidos/clasificación , Obstrucción Ureteral/genética , Obstrucción Ureteral/patología
18.
Cell Signal ; 79: 109881, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33301900

RESUMEN

Renal fibrosis is characterized by chronic inflammation and excessive accumulation of extracellular matrix and progressively leads to functional insufficiency and even total loss of kidney function. In this study we investigated the anti-fibrotic potential of two highly selective and potent SK2 inhibitors, SLM6031434 and HWG-35D, in unilateral ureter obstruction (UUO), a model for progressive renal fibrosis, in mice. In both cases, treatment with SLM6031434 or HWG-35D resulted in an attenuated fibrotic response to UUO in comparison to vehicle-treated mice as demonstrated by reduced collagen accumulation and a decreased expression of collagen-1 (Col1), fibronectin-1 (FN-1), connective tissue growth factor (CTGF), and α-smooth muscle actin (α-SMA). Similar to our previous study in Sphk2-/- mice, we found an increased protein expression of Smad7, a negative regulator of the pro-fibrotic TGFß/Smad signalling cascade, accompanied by a strong accumulation of sphingosine in SK2 inhibitor-treated kidneys. Treatment of primary renal fibroblasts with SLM6031434 or HWG-35D dose-dependently increased Smad7 expression and ameliorated the expression of Col1, FN-1 and CTGF. In summary, these data prove the anti-fibrotic potential of SK2 inhibition in a mouse model of renal fibrosis, thereby validating SK2 as pharmacological target for the treatment of fibrosis in chronic kidney disease.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Fibrosis , Ratones , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Insuficiencia Renal Crónica/enzimología , Insuficiencia Renal Crónica/genética
19.
Cells ; 9(10)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003441

RESUMEN

Diverse extracellular signals induce plasma membrane translocation of sphingosine kinase-1 (SphK1), thereby enabling inside-out signaling of sphingosine-1-phosphate. We have shown before that Gq-coupled receptors and constitutively active Gαq/11 specifically induced a rapid and long-lasting SphK1 translocation, independently of canonical Gq/phospholipase C (PLC) signaling. Here, we further characterized Gq/11 regulation of SphK1. SphK1 translocation by the M3 receptor in HEK-293 cells was delayed by expression of catalytically inactive G-protein-coupled receptor kinase-2, p63Rho guanine nucleotide exchange factor (p63RhoGEF), and catalytically inactive PLCß3, but accelerated by wild-type PLCß3 and the PLCδ PH domain. Both wild-type SphK1 and catalytically inactive SphK1-G82D reduced M3 receptor-stimulated inositol phosphate production, suggesting competition at Gαq. Embryonic fibroblasts from Gαq/11 double-deficient mice were used to show that amino acids W263 and T257 of Gαq, which interact directly with PLCß3 and p63RhoGEF, were important for bradykinin B2 receptor-induced SphK1 translocation. Finally, an AIXXPL motif was identified in vertebrate SphK1 (positions 100-105 in human SphK1a), which resembles the Gαq binding motif, ALXXPI, in PLCß and p63RhoGEF. After M3 receptor stimulation, SphK1-A100E-I101E and SphK1-P104A-L105A translocated in only 25% and 56% of cells, respectively, and translocation efficiency was significantly reduced. The data suggest that both the AIXXPL motif and currently unknown consequences of PLCß/PLCδ(PH) expression are important for regulation of SphK1 by Gq/11.


Asunto(s)
Membrana Celular/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Lisofosfolípidos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina/análogos & derivados , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Animales , Membrana Celular/genética , Cromatografía Líquida de Alta Presión , Fibroblastos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Unión Proteica , Receptor de Bradiquinina B2/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal/genética , Esfingosina/metabolismo , Espectrometría de Masas en Tándem , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
20.
Int J Mol Sci ; 21(17)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872326

RESUMEN

Emerging evidence suggests a complex relationship between sphingosine 1-phosphate (S1P) signaling and stroke. Here, we show the kinetics of S1P in the acute phase of ischemic stroke and highlight accompanying changes in immune cells and S1P receptors (S1PR). Using a C57BL/6 mouse model of middle cerebral artery occlusion (MCAO), we assessed S1P concentrations in the brain, plasma, and spleen. We found a steep S1P gradient from the spleen towards the brain. Results obtained by qPCR suggested that cells expressing the S1PR type 1 (S1P1+) were the predominant population deserting the spleen. Here, we report the cerebral recruitment of T helper (TH) and regulatory T (TREG) cells to the ipsilateral hemisphere, which was associated with differential regulation of cerebral S1PR expression patterns in the brain after MCAO. This study provides insight that the S1P-S1PR axis facilitates splenic T cell egress and is linked to the cerebral recruitment of S1PR+ TH and TREG cells. Further insights by which means the S1P-S1PR-axis orchestrates neuronal positioning may offer new therapeutic perspectives after ischemic stroke.


Asunto(s)
Encéfalo/inmunología , Accidente Cerebrovascular Isquémico/metabolismo , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Reguladores/metabolismo , Animales , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico/etiología , Accidente Cerebrovascular Isquémico/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...