Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 175(4): e13984, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37616001

RESUMEN

Elevated [CO2 ] (E[CO2 ]) mitigates agricultural losses of C4 plants under drought. Although several studies have described the molecular responses of the C4 plant species Sorghum bicolor during drought exposure, few have reported the combined effects of drought and E[CO2 ] (E[CO2 ]/D) on the roots. A previous study showed that, among plant organs, green prop roots (GPRs) under E[CO2 ]/D presented the second highest increase in biomass after leaves compared with ambient [CO2 ]/D. GPRs are photosynthetically active and sensitive to drought. To understand which mechanisms are involved in the increase in biomass of GPRs, we performed transcriptome analyses of GPRs under E[CO2 ]/D. Whole-transcriptome analysis revealed several pathways altered under E[CO2 ]/D, among which photosynthesis was strongly affected. We also used previous metabolome data to support our transcriptome data. Activities associated with photosynthesis and central metabolism increased, as seen by the upregulation of photosynthesis-related genes, a rise in glucose and polyol contents, and increased contents of chlorophyll a and carotenoids. Protein-protein interaction networks revealed that proliferation, biogenesis, and homeostasis categories were enriched and contained mainly upregulated genes. The findings suggest that the previously reported increase in GPR biomass of plants grown under E[CO2 ]/D is mainly attributed to glucose and polyol accumulation, as well as photosynthesis activity and carbon provided by respiratory CO2 refixation. Our findings reveal that an intriguing and complex metabolic process occurs in GPRs under E[CO2 ]/D, showing the crucial role of these organs in plant drought /tolerance.


Asunto(s)
Sorghum , Sorghum/genética , Sorghum/metabolismo , Biomasa , Dióxido de Carbono/metabolismo , Azúcares , Sequías , Clorofila A , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Glucosa
2.
Plant Physiol Biochem ; 169: 211-223, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34808464

RESUMEN

Water deficits are responsible for countless agricultural losses. Among the affected crops, C4 plants are of special interest due to their high water and nitrogen use efficiency. Two accessions of Setaria viridis (Ast-1 and A10.1) with contrasting responses to water deficit were used in the current work to better understand the mechanisms behind drought tolerance in C4 species. Our results showed that although the A10.1 accession exhibited a reduced size and lower Rfd values in comparison to Ast-1, it had overall higher Fv/Fm and lower NPQ values in well-watered conditions. The water deficit induction was performed with PEG-8000 at the grain-filling stage using dehydration cycles. Analysis of physiological measurements showed the A10.1 accession as being more tolerant to multiple water deficit exposures. In addition, PCA identified a clear difference in the pattern of drought response of the accessions. Four drought marker genes previously described in the literature were chosen to evaluate the response at the molecular level: SvP5CS2, SvDHN1, SvNAC6, and SvWRKY1. Besides confirming that Ast-1 is a more sensitive accession, the expression analysis revealed that SvNAC1 might better monitor drought stress, while SvWRKY1 was able to differentiate the two accessions. Distinct evolutionary histories of each accession may be behind their differences in response to water deficits.


Asunto(s)
Setaria (Planta) , Productos Agrícolas , Deshidratación , Sequías , Setaria (Planta)/genética , Estrés Fisiológico , Agua
3.
Plant Physiol Biochem ; 155: 114-125, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32745930

RESUMEN

Drought-tolerant species, such as Setaria viridis, a C4 model plant, make physiological and biochemical adjustments water limitation and recover from the stress upon its release. We investigated S. viridis (A10.1 accession) responses to continuing osmotic stress. The osmotic stress was imposed using polyethylene glycol (PEG) 8000 (7.5%) for 10 days. Morphological traits and stomatal conductance were measured daily for the 10 days. On days 6 and 10, the following traits were measured separately for root and shoot: relative water content (RWC), osmotic potential (OP), electrolytic leakage (EL), and proline content. qPCR analysis was used to evaluate the expression of five selected genes in roots (SvLEA, SvDREB1C, SvPIP2-1, SvHSP20, and SvP5CS2), and chlorophyll a fluorescence was measured on three key days. The morphological data demonstrated a drastic reduction in shoot biomass as an effect of water deficit caused by the osmotic stress. Shoot biomass reduction could be associated with putative ABA-dependent signaling involved in SvDREB1C expression. Stomatal conductance and photosynthesis were severely affected up until day 6, however, stomatal conductance and some photosynthetic parameters such as FV/FM, ABS/RC, and DI0/RC showed total or slight recovery on day 10. Root EL decreased in treated plants suggesting an investment in membrane protection by osmoregulator expression such as dehydrin (SvLEA) and proline (SvP5CS2) genes. Our data suggest that S. viridis exhibited a partial recovery from an imposed and constant osmotic stress within 10 days.


Asunto(s)
Presión Osmótica , Setaria (Planta)/fisiología , Estrés Fisiológico , Clorofila A , Sequías , Fotosíntesis , Hojas de la Planta , Estomas de Plantas , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...