Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Phys J E Soft Matter ; 44(11): 134, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34731339

RESUMEN

Shear strain localization into shear bands is associated with velocity weakening instabilities and earthquakes. Here, we simulate steady-state plane-shear flow of numerical granular material (gouge), confined between parallel surfaces. Both constant shear stress and constant strain-rate boundary conditions are tested, and the two types of boundary conditions are found to yield distinct velocity profiles and friction laws. The inertial number, I, exerts the largest control on the layers' behavior, but additional dependencies of friction on normal stress and thickness of the layer are observed under constant stress boundary condition. We find that shear-band localization, which is present in the quasistatic regime ([Formula: see text]) in rate-controlled shear, is absent under stress-controlled loading. In the latter case, flow ceases when macroscopic friction coefficient approaches the quasistatic friction value. The inertial regime that occurs at higher inertial numbers ([Formula: see text]) is associated with distributed shear, and friction and porosity that increase with shear rate (rate-strengthening regime). The finding that shear under constant stress boundary condition produces the inertial, distributed shear but never quasistatic, localized deformation is rationalized based on low fluctuations of shear forces in granular contacts for stress-controlled loading. By examining porosity within and outside a shear band, we also provide a mechanical reason why the transition between quasistatic and inertial shear coincides with the transition between localized and distributed strain.

2.
Membranes (Basel) ; 11(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34677519

RESUMEN

Pharmaceutical wastewater pollution has reached an alarming stage, as many studies have reported. Membrane separation has shown great performance in wastewater treatment, but there are some drawbacks and undesired byproducts of this process. Selective membranes could be used for pollutant investigation sensors or even for pollutant recovery. The polydimethylsiloxane (PDMS) membrane was first tested on separated and mixed antibiotic (ATB) water solutions containing sulfamethoxazole (SM), trimethoprim (TMP), and tetracycline (TET). Then, the bare and ultra-violet grafted (UV-grafted) PDMS membranes (MMA-DMAEMA 10, GMA-DMAEMA 5, and GMA-DMAEMA 10) were tested in tramadol (TRA) separation, where the diffusion coefficient was evaluated. Finally, the membranes were tested in pertraction with a mixture of SM, TMP, TET, and TRA. The membranes were characterized using the following methods: contact angle measurement, FTIR, SEM/EDX, and surface and pore analysis. The main findings were that TET was co-eluted during mixed ATB pertraction, and GMA-DMAEMA 5 was found to selectively permeate TRA over the present ATBs.

3.
Membranes (Basel) ; 11(9)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34564537

RESUMEN

The hydrophilic and hydrophobic single-walled carbon nanotube membranes were prepared and progressively applied in sorption, filtration, and pertraction experiments with the aim of eliminating three antibiotics-tetracycline, sulfamethoxazole, and trimethoprim-as a single pollutant or as a mixture. The addition of SiO2 to the single-walled carbon nanotubes allowed a transparent study of the influence of porosity on the separation processes. The mild oxidation, increasing hydrophilicity, and reactivity of the single-walled carbon nanotube membranes with the pollutants were suitable for the filtration and sorption process, while non-oxidized materials with a hydrophobic layer were more appropriate for pertraction. The total pore volume increased with an increasing amount of SiO2 (from 743 to 1218 mm3/g) in the hydrophilic membranes. The hydrophobic layer completely covered the carbon nanotubes and SiO2 nanoparticles and provided significantly different membrane surface interactions with the antibiotics. Single-walled carbon nanotubes adsorbed the initial amount of antibiotics in less than 5 h. A time of 2.3 s was sufficient for the filtration of 98.8% of sulfamethoxazole, 95.5% of trimethoprim, and 87.0% of tetracycline. The thicker membranes demonstrate a higher adsorption capacity. However, the pertraction was slower than filtration, leading to total elimination of antibiotics (e.g., 3 days for tetracycline). The diffusion coefficient of the antibiotics varies between 0.7-2.7 × 10-10, depending on the addition of SiO2 in perfect agreement with the findings of the textural analysis and scanning electron microscopy observations. Similar to filtration, tetracycline is retained by the membranes more than sulfamethoxazole and trimethoprim.

4.
J Chem Phys ; 139(6): 064701, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23947874

RESUMEN

The aim of this study is to assess how much the results of nucleation experiments in a laminar flow diffusion chamber (LFDC) are influenced by the complexity of the model of the transport properties. The effects of the type of fluid dynamic model (the steady state compressible Navier-Stokes system for an ideal gas/parabolic profile approximation) and the contributions of the coupled terms describing the Dufour effects and thermodiffusion on the predicted magnitude of the nucleation maxima and its location were investigated. This study was performed on the model of the homogeneous nucleation of an n-butanol-He vapor mixture in a LFDC. The isothermal dependencies of the nucleation rate on supersaturation were determined at three nucleation temperatures: 265 K, 270 K, and 280 K. For this purpose, the experimental LFDC data measured by A. P. Hyvärinen et al. [J. Chem. Phys. 124, 224304 (2006)] were reevaluated using transport models at different levels of complexity. Our results indicate that the type of fluid dynamical model affects both the position of the nucleation maxima in the LFDC and the maximum value of the nucleation rate. On the other hand, the Dufour effects and thermodiffusion perceptibly influence only the value of the maximal nucleation rate. Its position changes only marginally. The dependence of the maximum experimental nucleation rate on the saturation ratio and nucleation temperature was acquired for each case. Based on this dependence, we presented a method for the comparison and evaluation of the uncertainties of simpler models' solutions for the results, where we assumed that the model with Navier-Stokes equations and both coupled effects taken into account was the basis. From this comparison, it follows that an inappropriate choice of mathematical models could lead to relative errors of the order of several hundred percent in the maximum experimental nucleation rate. In the conclusion of this study, we also provide some general recommendations concerning the proper choice and setting of the mathematical model of transport processes in the LFDC.

5.
Chaos ; 19(4): 043125, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20059221

RESUMEN

We analyze dynamics of stationary nonuniform patterns, traveling waves, and spatiotemporal chaos in a simple model of a tubular cross-flow reactor. The reactant is supplied continuously via convective flow and/or by diffusion through permeable walls of the reactor. First order exothermic reaction kinetics is assumed and the system is described by mass and energy balances forming coupled reaction-diffusion-convection equations. Dynamical regimes of the reaction-diffusion subsystem range from pulses and fronts to periodic waves and complex chaotic behavior. Two distinct types of chaotic patterns are identified and characterized by Lyapunov dimension. Next we examine the effects of convection on various types of the reaction-diffusion regimes. Remarkable zigzag fronts and steady state patterns are found despite the absence of differential flow. We employ continuation techniques to elucidate the existence and form of these patterns.


Asunto(s)
Difusión , Modelos Químicos , Dinámicas no Lineales , Reología/métodos , Catálisis , Simulación por Computador , Transferencia de Energía , Calor , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...