Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 299(11): 105267, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37734554

RESUMEN

Herbicides are small molecules that act by inhibiting specific molecular target sites within primary plant metabolic pathways resulting in catastrophic and lethal consequences. The stress induced by herbicides generates reactive oxygen species (ROS), but little is known about the nexus between each herbicide mode of action (MoA) and their respective ability to induce ROS formation. Indeed, some herbicides cause dramatic surges in ROS levels as part of their primary MoA, whereas other herbicides may generate some ROS as a secondary effect of the stress they imposed on plants. In this review, we discuss the types of ROS and their respective reactivity and describe their involvement for each known MoA based on the new Herbicide Resistance Action Committee classification.


Asunto(s)
Herbicidas , Herbicidas/farmacología , Herbicidas/metabolismo , Estrés Oxidativo , Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales
2.
Cell Transplant ; 31: 9636897221101116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35596532

RESUMEN

Kernicterus is a permanent condition caused by brain damage from bilirubin toxicity. Dystonia is one of the most debilitating symptoms of kernicterus and results from damage to the globus pallidus (GP). One potential therapeutic strategy to treat dystonia in kernicterus is to replace lost GP neurons and restore basal ganglia circuits through stem cell transplantation. Toward this end, we differentiated human embryonic stem cells (hESCs) into medial ganglion eminence (MGE; the embryological origin of most of the GP neurons)-like neural precursor cells (NPCs). We determined neurochemical phenotype in cell culture and after transplanting into the GP of jaundiced Gunn rats. We also determined grafted cell survival as well as migration, distribution, and morphology after transplantation. As in the GP, most cultured MGE-like NPCs expressed γ-aminobutyric acid (GABA), with some co-expressing markers for parvalbumin (PV) and others expressing markers for pro-enkephalin (PENK). MGE-like NPCs survived in brains at least 7 weeks after transplantation, with most aggregating near the injection site. Grafted cells expressed GABA and PV or PENK as in the normal GP. Although survival was low and the maturity of grafted cells varied, many cells produced neurite outgrowth. While promising, our results suggest the need to further optimize the differentiation protocol for MGE-like NPC for potential use in treating dystonia in kernicterus.


Asunto(s)
Distonía , Ictericia , Kernicterus , Células-Madre Neurales , Animales , Encefalinas , Ictericia/terapia , Células-Madre Neurales/trasplante , Parvalbúminas/metabolismo , Precursores de Proteínas , Ratas , Ratas Gunn , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA