Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 326(5): F839-F854, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38450434

RESUMEN

Resident memory T cells (TRMs), which are memory T cells that are retained locally within tissues, have recently been described as antigen-specific frontline defenders against pathogens in barrier and nonbarrier epithelial tissues. They have also been noted for perpetuating chronic inflammation. The conditions responsible for TRM differentiation are still poorly understood, and their contributions, if any, to sterile models of chronic kidney disease (CKD) remain a mystery. In this study, we subjected male C57BL/6J mice and OT-1 transgenic mice to five consecutive days of 2 mg/kg aristolochic acid (AA) injections intraperitoneally to induce CKD or saline injections as a control. We evaluated their kidney immune profiles at 2 wk, 6 wk, and 6 mo after treatment. We identified a substantial population of TRMs in the kidneys of mice with AA-induced CKD. Flow cytometry of injured kidneys showed T cells bearing TRM surface markers and single-cell (sc) RNA sequencing revealed these cells as expressing well-known TRM transcription factors and receptors responsible for TRM differentiation and maintenance. Although kidney TRMs expressed Cd44, a marker of antigen experience and T cell activation, their derivation was independent of cognate antigen-T cell receptor interactions, as the kidneys of transgenic OT-1 mice still harbored considerable proportions of TRMs after injury. Our results suggest a nonantigen-specific or antigen-independent mechanism capable of generating TRMs in the kidney and highlight the need to better understand TRMs and their involvement in CKD.NEW & NOTEWORTHY Resident memory T cells (TRMs) differentiate and are retained within the kidneys of mice with aristolochic acid (AA)-induced chronic kidney disease (CKD). Here, we characterized this kidney TRM population and demonstrated TRM derivation in the kidneys of OT-1 transgenic mice with AA-induced CKD. A better understanding of TRMs and the processes by which they can differentiate independent of antigen may help our understanding of the interactions between the immune system and kidneys.


Asunto(s)
Ácidos Aristolóquicos , Diferenciación Celular , Riñón , Células T de Memoria , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica , Animales , Insuficiencia Renal Crónica/inmunología , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Masculino , Ácidos Aristolóquicos/toxicidad , Riñón/inmunología , Riñón/metabolismo , Riñón/patología , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Ratones Transgénicos , Memoria Inmunológica , Modelos Animales de Enfermedad , Ratones
2.
J Pharmacol Exp Ther ; 388(2): 605-612, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37699712

RESUMEN

Arsenicals are deadly chemical warfare agents that primarily cause death through systemic capillary fluid leakage and hypovolemic shock. Arsenical exposure is also known to cause acute kidney injury, a condition that contributes to arsenical-associated death due to the necessity of the kidney in maintaining whole-body fluid homeostasis. Because of the global health risk that arsenicals pose, a nuanced understanding of how arsenical exposure can lead to kidney injury is needed. We used a nontargeted transcriptional approach to evaluate the effects of cutaneous exposure to phenylarsine oxide, a common arsenical, in a murine model. Here we identified an upregulation of metabolic pathways such as fatty acid oxidation, fatty acid biosynthesis, and peroxisome proliferator-activated receptor (PPAR)-α signaling in proximal tubule epithelial cell and endothelial cell clusters. We also revealed highly upregulated genes such as Zbtb16, Cyp4a14, and Pdk4, which are involved in metabolism and metabolic switching and may serve as future therapeutic targets. The ability of arsenicals to inhibit enzymes such as pyruvate dehydrogenase has been previously described in vitro. This, along with our own data, led us to conclude that arsenical-induced acute kidney injury may be due to a metabolic impairment in proximal tubule and endothelial cells and that ameliorating these metabolic effects may lead to the development of life-saving therapies. SIGNIFICANCE STATEMENT: In this study, we demonstrate that cutaneous arsenical exposure leads to a transcriptional shift enhancing fatty acid metabolism in kidney cells, indicating that metabolic alterations might mechanistically link topical arsenical exposure to acute kidney injury. Targeting metabolic pathways may generate promising novel therapeutic approaches in combating arsenical-induced acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Arsenicales , Ratones , Humanos , Animales , Células Endoteliales/metabolismo , Riñón/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Células Epiteliales/metabolismo , Ácidos Grasos/metabolismo , Arsenicales/efectos adversos , Arsenicales/metabolismo
3.
Antioxidants (Basel) ; 11(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36290611

RESUMEN

Acute kidney injury (AKI) is a major public health concern with significant morbidity and mortality and no current treatments beyond supportive care and dialysis. Preclinical studies have suggested that heme-oxygenase-1 (HO-1), an enzyme that catalyzes the breakdown of heme, has promise as a potential therapeutic target for AKI. Clinical trials involving HO-1 products (biliverdin, carbon monoxide, and iron), however, have not progressed beyond the Phase ½ level. We identified small-molecule inducers of HO-1 that enable us to exploit the full therapeutic potential of HO-1, the combination of its products, and yet-undefined effects of the enzyme system. Through cell-based, high-throughput screens for induction of HO-1 driven by the human HO-1 promoter/enhancer, we identified two novel small molecules and broxaldine (an FDA-approved drug) for further consideration as candidate compounds exhibiting an Emax ≥70% of 5 µM hemin and EC50 <10 µM. RNA sequencing identified shared binding motifs to NRF2, a transcription factor known to regulate antioxidant genes, including HMOX1. In vitro, the cytoprotective function of the candidates was assessed against cisplatin-induced cytotoxicity and apoptosis. In vivo, delivery of a candidate compound induced HO-1 expression in the kidneys of mice. This study serves as the basis for further development of small-molecule HO-1 inducers as preventative or therapeutic interventions for a variety of pathologies, including AKI.

4.
Front Physiol ; 13: 897179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574469

RESUMEN

Chronic kidney disease (CKD) is a significant public health challenge with a substantial associated risk of mortality, morbidity, and health care expenditure. Culprits that lead to development and progression of CKD are multifaceted and heterogenous in nature. This notion underscores the need for diversification of animal models to investigate its pathophysiology, related complications, and to subsequently enable discovery of novel therapeutics. Importantly, animal models that could recapitulate complications of CKD in both genders are desperately needed. Cardiovascular disease is the most common cause of death in CKD patients that may be due in part to high prevalence of vascular calcification (VC). Using DBA/2 mice that are susceptible to development of VC, we sought to investigate the feasibility and reproducibility of a unilateral ischemia-reperfusion model followed by contralateral nephrectomy (UIRI/Nx) to induce CKD and its related complications in female and male mice. Our results demonstrate that irrespective of gender, mice faithfully displayed complications of moderate CKD following UIRI/Nx as evidenced by significant rise in serum creatinine, albuminuria, higher degree of collagen deposition, elevated expression of classic fibrotic markers, higher circulating levels of FGF-23, PTH and hepcidin. Moreover, we corroborate the osteoblastic transition of aortic smooth muscle cells and cardiomyocytes based on higher levels of osteoblastic markers namely, Cbfa-1, osteopontin, osteocalcin, and osterix. Our data confirms a viable, and consistent model of moderate CKD and its associated complications in both male and female mice. Furthermore, early evidence of osteoblastic transition of cardiovascular system in this model confirms its suitability for studying and implementing potential preventive and/or therapeutic approaches that are urgently needed in this field.

5.
Am J Physiol Renal Physiol ; 321(6): F675-F688, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34658261

RESUMEN

Expansion of renal lymphatic networks, or lymphangiogenesis (LA), is well recognized during development and is now being implicated in kidney diseases. Although LA is associated with multiple pathological conditions, very little is known about its role in acute kidney injury. The purpose of this study was to evaluate the role of LA in a model of cisplatin-induced nephrotoxicity. LA is predominately regulated by vascular endothelial growth factor (VEGF)-C and VEGF-D, ligands that exert their function through their cognate receptor VEGF receptor 3 (VEGFR3). We demonstrated that use of MAZ51, a selective VEGFR3 inhibitor, caused significantly worse structural and functional kidney damage in cisplatin nephrotoxicity. Apoptotic cell death and inflammation were also increased in MAZ51-treated animals compared with vehicle-treated animals following cisplatin administration. Notably, MAZ51 caused significant upregulation of intrarenal phospho-NF-κB, phospho-JNK, and IL-6. Cisplatin nephrotoxicity is associated with vascular congestion due to endothelial dysfunction. Using three-dimensional tissue cytometry, a novel approach to explore lymphatics in the kidney, we detected significant vascular autofluorescence attributed to erythrocytes in cisplatin alone-treated animals. Interestingly, no such congestion was detected in MAZ51-treated animals. We found increased renal vascular damage in MAZ51-treated animals, whereby MAZ51 caused a modest decrease in the endothelial markers endomucin and von Willebrand factor, with a modest increase in VEGFR2. Our findings identify a protective role for de novo LA in cisplatin nephrotoxicity and provide a rationale for the development of therapeutic approaches targeting LA. Our study also suggests off-target effects of MAZ51 on the vasculature in the setting of cisplatin nephrotoxicity.NEW & NOTEWORTHY Little is known about injury-associated LA in the kidney and its role in the pathophysiology of acute kidney injury (AKI). Observed exacerbation of cisplatin-induced AKI after LA inhibition was accompanied by increased medullary damage and cell death in the kidney. LA inhibition also upregulated compensatory expression of LA regulatory proteins, including JNK and NF-κB. These data support the premise that LA is induced during AKI and lymphatic expansion is a protective mechanism in cisplatin nephrotoxicity.


Asunto(s)
Indoles/toxicidad , Enfermedades Renales/inducido químicamente , Riñón/efectos de los fármacos , Linfangiogénesis/efectos de los fármacos , Vasos Linfáticos/efectos de los fármacos , Naftalenos/toxicidad , Inhibidores de Proteínas Quinasas/toxicidad , Receptor 3 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Cisplatino , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Riñón/enzimología , Riñón/patología , Riñón/fisiopatología , Enfermedades Renales/enzimología , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Vasos Linfáticos/enzimología , Vasos Linfáticos/patología , Vasos Linfáticos/fisiopatología , Masculino , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Fosforilación , Transducción de Señal , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo
6.
JCI Insight ; 6(10)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34027893

RESUMEN

Despite the high morbidity and mortality among patients with extensive cutaneous burns in the intensive care unit due to the development of acute respiratory distress syndrome, effective therapeutics remain to be determined. This is primarily because the mechanisms leading to acute lung injury (ALI) in these patients remain unknown. We test the hypothesis that cutaneous chemical burns promote lung injury due to systemic activation of neutrophils, in particular, toxicity mediated by the deployment of neutrophil extracellular traps (NETs). We also demonstrate the potential benefit of a peptidyl arginine deiminase 4 (PAD4) inhibitor to prevent NETosis and to preserve microvascular endothelial barrier function, thus reducing the severity of ALI in mice. Our data demonstrated that phenylarsine oxide (PAO) treatment of neutrophils caused increased intracellular Ca2+-associated PAD4 activity. A dermal chemical burn by lewisite or PAO resulted in PAD4 activation, NETosis, and ALI. NETs disrupted the barrier function of endothelial cells in human lung microvascular endothelial cell spheroids. Citrullinated histone 3 alone caused ALI in mice. Pharmacologic or genetic abrogation of PAD4 inhibited lung injury following cutaneous chemical burns. Cutaneous burns by lewisite and PAO caused ALI by PAD4-mediated NETosis. PAD4 inhibitors may have potential as countermeasures to suppress detrimental lung injury after chemical burns.


Asunto(s)
Lesión Pulmonar Aguda , Quemaduras Químicas/complicaciones , Trampas Extracelulares/metabolismo , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Arginina Deiminasa Proteína-Tipo 4/antagonistas & inhibidores , Arginina Deiminasa Proteína-Tipo 4/metabolismo
7.
Eur Respir J ; 58(6)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34049949

RESUMEN

AIM: We investigated the mechanisms by which N1-(ß-d-ribofuranosyl)-5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMP-activated protein kinase (AMPK), decreases lung injury and mortality when administered to mice post exposure to bromine gas (Br2). METHODS: We exposed male C57BL/6 mice and heme oxygenase-1 (HO-1)-deficient (HO-1-/-) and corresponding wild-type (WT) littermate mice to Br2 (600 ppm for 45 or 30 min, respectively) in environmental chambers and returned them to room air. AICAR was administered 6 h post exposure (10 mg·kg-1, intraperitoneal). We assessed survival, indices of lung injury, high mobility group box 1 (HMGB1) in the plasma, HO-1 levels in lung tissues and phosphorylation of AMPK and its upstream liver kinase B1 (LKB1). Rat alveolar type II epithelial (L2) cells and human club-like epithelial (H441) cells were also exposed to Br2 (100 ppm for 10 min). After 24 h we measured apoptosis and necrosis, AMPK and LKB1 phosphorylation, and HO-1 expression. RESULTS: There was a marked downregulation of phosphorylated AMPK and LKB1 in lung tissues and in L2 and H441 cells post exposure. AICAR increased survival in C57BL/6 but not in HO-1-/- mice. In WT mice, AICAR decreased lung injury and restored phosphorylated AMPK and phosphorylated LKB1 to control levels and increased HO-1 levels in both lung tissues and cells exposed to Br2. Treatment of L2 and H441 cells with small interfering RNAs against nuclear factor erythroid 2-related factor 2 or HO-1 abrogated the protective effects of AICAR. CONCLUSIONS: Our data indicate that the primary mechanism for the protective action of AICAR in toxic gas injury is the upregulation of lung HO-1 levels.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Lesión Pulmonar Aguda , Lesión Pulmonar Aguda/inducido químicamente , Aminoimidazol Carboxamida/análogos & derivados , Animales , Hemo-Oxigenasa 1/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ribonucleótidos/farmacología
8.
Lab Invest ; 101(9): 1186-1196, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34017058

RESUMEN

The lymphatic system plays an integral role in physiology and has recently been identified as a key player in disease progression. Tissue injury stimulates lymphatic expansion, or lymphangiogenesis (LA), though its precise role in disease processes remains unclear. LA is associated with inflammation, which is a key component of acute kidney injury (AKI), for which there are no approved therapies. While LA research has gained traction in the last decade, there exists a significant lack of understanding of this process in the kidney. Though innovative studies have elucidated markers and models with which to study LA, the field is still evolving with ways to visualize lymphatics in vivo. Prospero-related homeobox-1 (Prox-1) is the master regulator of LA and determines lymphatic cell fate through its action on vascular endothelial growth factor receptor expression. Here, we investigate the consequences of AKI on the abundance and distribution of lymphatic endothelial cells using Prox1-tdTomato reporter mice (ProxTom) coupled with large-scale three-dimensional quantitative imaging and tissue cytometry (3DTC). Using these technologies, we describe the spatial dynamics of lymphatic vasculature in quiescence and post-AKI. We also describe the use of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) as a marker of lymphatic vessels using 3DTC in the absence of the ProxTom reporter mice as an alternative approach. The use of 3DTC for lymphatic research presents a new avenue with which to study the origin and distribution of renal lymphatic vessels. These findings will enhance our understanding of renal lymphatic function during injury and could inform the development of novel therapeutics for intervention in AKI.


Asunto(s)
Lesión Renal Aguda , Citometría de Imagen , Imagenología Tridimensional , Vasos Linfáticos , Lesión Renal Aguda/diagnóstico por imagen , Lesión Renal Aguda/metabolismo , Animales , Proteínas de Homeodominio/metabolismo , Linfangiogénesis , Vasos Linfáticos/diagnóstico por imagen , Vasos Linfáticos/metabolismo , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Transgénicos , Proteínas Supresoras de Tumor/metabolismo
9.
Am J Physiol Renal Physiol ; 320(5): F706-F718, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33719570

RESUMEN

Cellular metabolic rates in the kidney are critical for maintaining normal renal function. In a hypoxic milieu, cells rely on glycolysis to meet energy needs, resulting in the generation of pyruvate and NADH. In the absence of oxidative phosphorylation, the continuation of glycolysis is dependent on the regeneration of NAD+ from NADH accompanied by the fermentation of pyruvate to lactate. This reaction is catalyzed by lactate dehydrogenase (LDH) isoform A (LDHA), whereas LDH isoform B (LDHB) catalyzes the opposite reaction. LDH is widely used as a potential injury marker as it is released from damaged cells into the urine and serum; however, the precise isoform-specific cellular localization of the enzyme along the nephron has not been characterized. By combining immunohistochemistry results and single-cell RNA-sequencing data on healthy mouse kidneys, we identified that LDHA is primarily expressed in proximal segments, whereas LDHB is expressed in the distal parts of the nephron. In vitro experiments in mouse and human renal proximal tubule cells showed an increase in LDHA following hypoxia with no change in LDHB. Using immunofluorescence, we observed that the overall expression of both LDHA and LDHB proteins decreased following renal ischemia-reperfusion injury as well as in the adenine-diet-induced model of chronic kidney disease. Single-nucleus RNA-sequencing analyses of kidneys following ischemia-reperfusion injury revealed a significant decline in the number of cells expressing detectable levels of Ldha and Ldhb; however, cells that were positive showed increased average expression postinjury, which subsided during the recovery phase. These data provide information on the cell-specific expression of LDHA and LDHB in the normal kidney as well as following acute and chronic kidney disease.NEW & NOTEWORTHY Cellular release of lactate dehydrogenase (LDH) is being used as an injury marker; however, the exact localization of LDH within the nephron remains unclear. We show that LDH isoform A is expressed proximally, whereas isoform B is expressed distally. Both subunit expressions were significantly altered in models of acute kidney injury and chronic kidney disease. Our study provides new insights into basal and postinjury renal lactate metabolism.


Asunto(s)
Lesión Renal Aguda/enzimología , Riñón/enzimología , L-Lactato Deshidrogenasa/metabolismo , Insuficiencia Renal Crónica/enzimología , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Animales , Biomarcadores/metabolismo , Hipoxia de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica , Humanos , Isoenzimas , Riñón/patología , L-Lactato Deshidrogenasa/genética , Masculino , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Factores de Tiempo
10.
Ann N Y Acad Sci ; 1480(1): 155-169, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32885420

RESUMEN

Lewisite and many other similar arsenicals are warfare vesicants developed and weaponized for use in World Wars I and II. These chemicals, when exposed to the skin and other epithelial tissues, cause rapid severe inflammation and systemic damage. Here, we show that topically applied arsenicals in a murine model produce significant acute kidney injury (AKI), as determined by an increase in the AKI biomarkers NGAL and KIM-1. An increase in reactive oxygen species and ER stress proteins, such as ATF4 and CHOP, correlated with the induction of these AKI biomarkers. Also, TUNEL staining of CHOP-positive renal tubular cells suggests CHOP mediates apoptosis in these cells. A systemic inflammatory response characterized by a significant elevation in inflammatory mediators, such as IL-6, IFN-α, and COX-2, in the kidney could be the underlying cause of AKI. The mechanism of arsenical-mediated inflammation involves activation of AMPK/Nrf2 signaling pathways, which regulate heme oxygenase-1 (HO-1). Indeed, HO-1 induction with cobalt protoporphyrin (CoPP) treatment in arsenical-treated HEK293 cells afforded cytoprotection by attenuating CHOP-associated apoptosis and cytokine mRNA levels. These results demonstrate that topical exposure to arsenicals causes AKI and that HO-1 activation may serve a protective role in this setting.


Asunto(s)
Lesión Renal Aguda , Apoptosis/efectos de los fármacos , Arsenicales , Sustancias para la Guerra Química/envenenamiento , Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Factor de Transcripción Activador 4/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/prevención & control , Animales , Biomarcadores/metabolismo , Ciclooxigenasa 2/metabolismo , Activación Enzimática/efectos de los fármacos , Células HEK293 , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Humanos , Interleucina-6/metabolismo , Ratones , Ratones Pelados , Factor 2 Relacionado con NF-E2/metabolismo , Factor de Transcripción CHOP/metabolismo
11.
Lab Invest ; 99(9): 1376-1388, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31019289

RESUMEN

Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected syndromes with significant attributable morbidity and mortality. The disturbing trend of increasing incidence and prevalence of these clinical disorders highlights the urgent need for better understanding of the underlying mechanisms that are involved in pathogenesis of these conditions. Lymphangiogenesis and its involvement in various inflammatory conditions is increasingly recognized while its role in AKI and CKD remains to be fully elucidated. Here, we studied lymphangiogenesis in three models of kidney injury. Our results demonstrate that the main ligands for lymphangiogenesis, VEGF-C and VEGF-D, are abundantly present in tubules at baseline conditions and the expression pattern of these ligands is significantly altered following injury. In addition, we show that both of these ligands increase in serum and urine post-injury and suggest that such increment may serve as novel urinary biomarkers of AKI as well as in progression of kidney disease. We also provide evidence that irrespective of the nature of initial insult, lymphangiogenic pathways are rapidly and robustly induced as evidenced by higher expression of lymphatic markers within the kidney.


Asunto(s)
Lesión Renal Aguda/metabolismo , Linfangiogénesis/fisiología , Insuficiencia Renal Crónica/metabolismo , Lesión Renal Aguda/patología , Animales , Modelos Animales de Enfermedad , Riñón/citología , Riñón/metabolismo , Riñón/patología , Túbulos Renales Proximales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica/patología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Factor D de Crecimiento Endotelial Vascular/metabolismo
12.
JCI Insight ; 4(2)2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30674729

RESUMEN

Acute kidney injury (AKI) is a devastating clinical condition affecting at least two-thirds of critically ill patients, and, among these patients, it is associated with a greater than 60% risk of mortality. Kidney mononuclear phagocytes (MPs) are implicated in pathogenesis and healing in mouse models of AKI and, thus, have been the subject of investigation as potential targets for clinical intervention. We have determined that, after injury, F4/80hi-expressing kidney-resident macrophages (KRMs) are a distinct cellular subpopulation that does not differentiate from nonresident infiltrating MPs. However, if KRMs are depleted using polyinosinic/polycytidylic acid (poly I:C), they can be reconstituted from bone marrow-derived precursors. Further, KRMs lack major histocompatibility complex class II (MHCII) expression before P7 but upregulate it over the next 14 days. This MHCII- KRM phenotype reappears after injury. RNA sequencing shows that injury causes transcriptional reprogramming of KRMs such that they more closely resemble that found at P7. KRMs after injury are also enriched in Wingless-type MMTV integration site family (Wnt) signaling, indicating that a pathway vital for mouse and human kidney development is active. These data indicate that mechanisms involved in kidney development may be functioning after injury in KRMs.

13.
Am J Physiol Renal Physiol ; 314(6): F1166-F1176, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29361668

RESUMEN

Lewisite (2-chlorovinyldichloroarsine) is an organic arsenical chemical warfare agent that was developed and weaponized during World Wars I/II. Stockpiles of lewisite still exist in many parts of the world and pose potential environmental and human health threat. Exposure to lewisite and similar chemicals causes intense cutaneous inflammatory response. However, morbidity and mortality in the exposed population is not only the result of cutaneous damage but is also a result of systemic injury. Here, we provide data delineating the pathogenesis of acute kidney injury (AKI) following cutaneous exposure to lewisite and its analog phenylarsine oxide (PAO) in a murine model. Both agents caused renal tubular injury, characterized by loss of brush border in proximal tubules and tubular cell apoptosis accompanied by increases in serum creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1. Interestingly, lewisite exposure enhanced production of reactive oxygen species (ROS) in the kidney and resulted in the activation of autophagic and DNA damage response (DDR) signaling pathways with increased expression of beclin-1, autophagy-related gene 7, and LC-3A/B-II and increased phosphorylation of γ-H2A.X and checkpoint kinase 1/2, respectively. Terminal deoxyribonucleotide-transferase-mediated dUTP nick-end labeling-positive cells were detected in renal tubules along with enhanced proapoptotic BAX/cleaved caspase-3 and reduced antiapoptotic BCL2. Scavenging ROS by cutaneous postexposure application of the antioxidant N-acetyl-l-cysteine reduced lewisite-induced autophagy and DNA damage. In summary, we provide evidence that topical exposure to lewisite causes AKI. The molecular mechanism underlying these changes involves ROS-dependent activation of autophagy and DDR pathway associated with the induction of apoptosis.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Arsenicales/efectos adversos , Autofagia , Sustancias para la Guerra Química/efectos adversos , Daño del ADN , Riñón/patología , Absorción Cutánea , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Arsenicales/metabolismo , Sustancias para la Guerra Química/metabolismo , Citocinas/metabolismo , Femenino , Células HEK293 , Humanos , Riñón/metabolismo , Masculino , Ratones Pelados , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Lab Invest ; 98(3): 391-402, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29251733

RESUMEN

The immune cellular compartment of the kidney is involved in organ development and homeostasis, as well as in many pathological conditions. Little is known about the mechanisms that drive intrarenal immune responses in the presence of renal tubular and interstitial cell death. However, it is known that tissue-resident leukocytes have the potential to have distinct roles compared with circulating cells. We used a parabiosis model in C57BL/6 CD45 congenic and green fluorescent protein transgenic mice to better understand the dynamics of immune cells in the kidney. We found F4/80Hi intrarenal macrophages exhibit minimal exchange with the peripheral circulation in two models of parabiosis, whether mice were attached for 4 or 16 weeks. Other intrarenal inflammatory cells demonstrate near total exchange with the circulating immune cell pool in healthy kidneys, indicating that innate and adaptive immune cells extensively traffic through the kidney interstitium during normal physiology. Neutrophils, dendritic cells, F4/80Low macrophages, T cells, B cells, and NK cells are renewed from the circulating immune cell pool. However, a fraction of double-negative T (CD4- CD8-) and NKT cells are long-lived or tissue resident. This study provides direct evidence of leukocyte sub-populations that are resident in the renal tissue, cells which demonstrate minimal to no exchange with the peripheral blood. In addition, the data demonstrate continual exchange of other sub-populations through uninflamed tissue.


Asunto(s)
Riñón/inmunología , Linfocitos/fisiología , Parabiosis , Animales , Quimerismo , Ratones Endogámicos C57BL , Bazo/inmunología
15.
JCI Insight ; 1(2): e85817, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27110594

RESUMEN

The cardioprotective inducible enzyme heme oxygenase-1 (HO-1) degrades prooxidant heme into equimolar quantities of carbon monoxide, biliverdin, and iron. We hypothesized that HO-1 mediates cardiac protection, at least in part, by regulating mitochondrial quality control. We treated WT and HO-1 transgenic mice with the known mitochondrial toxin, doxorubicin (DOX). Relative to WT mice, mice globally overexpressing human HO-1 were protected from DOX-induced dilated cardiomyopathy, cardiac cytoarchitectural derangement, and infiltration of CD11b+ mononuclear phagocytes. Cardiac-specific overexpression of HO-1 ameliorated DOX-mediated dilation of the sarcoplasmic reticulum as well as mitochondrial disorganization in the form of mitochondrial fragmentation and increased numbers of damaged mitochondria in autophagic vacuoles. HO-1 overexpression promotes mitochondrial biogenesis by upregulating protein expression of NRF1, PGC1α, and TFAM, which was inhibited in WT animals treated with DOX. Concomitantly, HO-1 overexpression inhibited the upregulation of the mitochondrial fission mediator Fis1 and resulted in increased expression of the fusion mediators, Mfn1 and Mfn2. It also prevented dynamic changes in the levels of key mediators of the mitophagy pathway, PINK1 and parkin. Therefore, these findings suggest that HO-1 has a novel role in protecting the heart from oxidative injury by regulating mitochondrial quality control.

16.
Kidney Int ; 88(1): 95-108, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25874599

RESUMEN

Inflammation culminating in fibrosis contributes to progressive kidney disease. Cross-talk between the tubular epithelium and interstitial cells regulates inflammation by a coordinated release of cytokines and chemokines. Here we studied the role of heme oxygenase-1 (HO-1) and the heavy subunit of ferritin (FtH) in macrophage polarization and renal inflammation. Deficiency in HO-1 was associated with increased FtH expression, accumulation of macrophages with a dysregulated polarization profile, and increased fibrosis following unilateral ureteral obstruction in mice: a model of renal inflammation and fibrosis. Macrophage polarization in vitro was predominantly dependent on FtH expression in isolated bone marrow-derived mouse monocytes. Using transgenic mice with conditional deletion of FtH in the proximal tubules (FtH(PT-/-)) or myeloid cells (FtH(LysM-/-)), we found that myeloid FtH deficiency did not affect polarization or accumulation of macrophages in the injured kidney compared with wild-type (FtH(+/+)) controls. However, tubular FtH deletion led to a marked increase in proinflammatory macrophages. Furthermore, injured kidneys from FtH(PT-/-) mice expressed significantly higher levels of inflammatory chemokines and fibrosis compared with kidneys from FtH(+/+) and FtH(LysM-/-) mice. Thus, there are differential effects of FtH in macrophages and epithelial cells, which underscore the critical role of FtH in tubular-macrophage cross-talk during kidney injury.


Asunto(s)
Apoferritinas/genética , Células Epiteliales/metabolismo , Hemo-Oxigenasa 1/deficiencia , Riñón/patología , Macrófagos/fisiología , Células Mieloides/metabolismo , Nefritis/metabolismo , Animales , Apoferritinas/metabolismo , Células Cultivadas , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Expresión Génica , Hemo-Oxigenasa 1/genética , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Activación de Macrófagos , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nefritis/etiología , ARN Mensajero/metabolismo , Obstrucción Ureteral/complicaciones
17.
Kidney Int ; 82(3): 278-91, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22495295

RESUMEN

Heme oxygenase-1 (HO-1) catalyzes the rate-limiting step in heme degradation, producing equimolar amounts of carbon monoxide, iron, and biliverdin. Induction of HO-1 is a beneficial response to tissue injury in diverse animal models of diseases including acute kidney injury. In vitro analysis has shown that the human HO-1 gene is transcriptionally regulated by changes in chromatin conformation, but whether such control occurs in vivo is not known. To enable such an analysis, we generated transgenic mice, harboring an 87-kb bacterial artificial chromosome expressing human HO-1 mRNA and protein and bred these mice with HO-1 knockout mice to generate humanized BAC transgenic mice. This successfully rescued the phenotype of the knockout mice including reduced birth rates, tissue iron overload, splenomegaly, anemia, leukocytosis, dendritic cell abnormalities, and survival after acute kidney injury induced by rhabdomyolysis or cisplatin nephrotoxicity. Transcription factors such as USF1/2, JunB, Sp1, and CTCF were found to associate with regulatory regions of the human HO-1 gene in the kidney following rhabdomyolysis. Chromosome conformation capture and ChIP-loop assays confirmed this in the formation of chromatin looping in vivo. Thus, these bacterial artificial chromosome humanized HO-1 mice are a valuable model to study the human HO-1 gene, providing insight to the in vivo architecture of the gene in acute kidney injury and other diseases.


Asunto(s)
Hemo-Oxigenasa 1/genética , Lesión Renal Aguda/enzimología , Lesión Renal Aguda/etiología , Animales , Cromatina/genética , Cromatina/metabolismo , Cromosomas Artificiales Bacterianos/genética , Cisplatino/toxicidad , Femenino , Regulación Enzimológica de la Expresión Génica , Hemo-Oxigenasa 1/deficiencia , Hemo-Oxigenasa 1/metabolismo , Humanos , Riñón/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rabdomiólisis/complicaciones , Especificidad de la Especie , Sulfonamidas , Factores de Transcripción/metabolismo , Uridina/análogos & derivados
18.
Am J Physiol Renal Physiol ; 300(1): F254-62, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21048024

RESUMEN

Multipotent mesenchymal stem cells (MSC) have become a popular and promising therapeutic approach in many clinical conditions. MSC are beneficial in animal models of acute kidney injury (AKI), by mediating differentiation-independent paracrine properties, and have prompted ongoing clinical trials to evaluate the safety and efficacy of MSC. Heme oxygenase-1 (HO-1) is induced in response to stress including AKI and has important anti-apoptotic, anti-inflammatory, and proangiogenic properties in these settings. We therefore examined whether HO-1 plays a role in the beneficial effects of MSC in AKI. We isolated MSC from bone marrow of age-matched HO-1+/+ and HO-1-/- mice. Our studies indicate that while differentiation of MSC into osteo- and adipocytic lineages did not differ between cells isolated from HO-1+/+ and HO-1-/- mice, MSC from HO-1-/- mice had significantly lower angiogenic potential. Moreover, HO-1-/- MSC demonstrated reduced expression and secretion of several important growth and proangiogenic factors (stromal cell-derived factor-1, vascular endothelial growth factor-A, and hepatocyte growth factor) compared with MSC derived from HO-1+/+ mice. In addition, conditioned medium of HO-1+/+ MSC rescued functional and morphological changes associated with cisplatin-induced AKI, while the HO-1-/--conditioned medium was ineffectual. Our studies indicate that HO-1 plays an important role in MSC-mediated protection. The results expand understanding of the renoprotective effects of MSC and may provide novel strategies to better utilize MSC in various disease models.


Asunto(s)
Lesión Renal Aguda/fisiopatología , Cisplatino/toxicidad , Hemo-Oxigenasa 1/fisiología , Células Madre Mesenquimatosas/fisiología , Neovascularización Fisiológica/fisiología , Comunicación Paracrina/fisiología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Animales , Quimiocina CXCL12 , Medios de Cultivo Condicionados/farmacología , Hemo-Oxigenasa 1/deficiencia , Factor de Crecimiento de Hepatocito/metabolismo , Hipoxia/fisiopatología , Masculino , Ratones , Células Madre Multipotentes , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
J Am Soc Nephrol ; 21(10): 1702-12, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20705711

RESUMEN

Autophagy is a tightly regulated, programmed mechanism to eliminate damaged organelles and proteins from a cell to maintain homeostasis. Cisplatin, a chemotherapeutic agent, accumulates in the proximal tubules of the kidney and causes dose-dependent nephrotoxicity, which may involve autophagy. In the kidney, cisplatin induces the protective antioxidant heme oxygenase-1 (HO-1). In this study, we examined the relationship between autophagy and HO-1 during cisplatin-mediated acute kidney injury (AKI). In wild-type primary proximal tubule cells (PTC), we observed a time-dependent increase in autophagy after cisplatin. In HO-1(-/-) PTC, however, we observed significantly higher levels of basal autophagy, impaired progression of autophagy, and increased apoptosis after cisplatin. Restoring HO-1 expression in these cells reversed the autophagic response and inhibited apoptosis after treatment with cisplatin. In vivo, although both wild-type and HO-1-deficient mice exhibited autophagosomes in the proximal tubules of the kidney in response to cisplatin, HO-1-deficient mice had significantly more autophagosomes, even in saline-treated animals. In addition, ecdysone-induced overexpression of HO-1 in cells led to a delay in autophagy progression, generated significantly lower levels of reactive oxygen species, and protected against cisplatin cytotoxicity. These findings demonstrate that HO-1 inhibits autophagy, suggesting that the heme oxygenase system may contain therapeutic targets for AKI.


Asunto(s)
Lesión Renal Aguda/enzimología , Autofagia , Hemo-Oxigenasa 1/metabolismo , Túbulos Renales Proximales/enzimología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología , Animales , Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Humanos , Túbulos Renales Proximales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...