Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2990, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582801

RESUMEN

The formation of extracellular DNA traps (ETosis) is a first response mechanism by specific immune cells following exposure to microbes. Initially characterized in vertebrate neutrophils, cells capable of ETosis have been discovered recently in diverse non-vertebrate taxa. To assess the conservation of ETosis between evolutionarily distant non-vertebrate phyla, we observed and quantified ETosis using the model ctenophore Mnemiopsis leidyi and the oyster Crassostrea gigas. Here we report that ctenophores - thought to have diverged very early from the metazoan stem lineage - possess immune-like cells capable of phagocytosis and ETosis. We demonstrate that both Mnemiopsis and Crassostrea immune cells undergo ETosis after exposure to diverse microbes and chemical agents that stimulate ion flux. We thus propose that ETosis is an evolutionarily conserved metazoan defense against pathogens.


Asunto(s)
Ctenóforos , Trampas Extracelulares , Animales , Ctenóforos/genética , Neutrófilos
2.
BMC Genomics ; 25(1): 226, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424480

RESUMEN

Long-read sequencing is revolutionizing de-novo genome assemblies, with continued advancements making it more readily available for previously understudied, non-model organisms. Stony corals are one such example, with long-read de-novo genome assemblies now starting to be publicly available, opening the door for a wide array of 'omics-based research. Here we present a new de-novo genome assembly for the endangered Caribbean star coral, Orbicella faveolata, using PacBio circular consensus reads. Our genome assembly improved the contiguity (51 versus 1,933 contigs) and complete and single copy BUSCO orthologs (93.6% versus 85.3%, database metazoa_odb10), compared to the currently available reference genome generated using short-read methodologies. Our new de-novo assembled genome also showed comparable quality metrics to other coral long-read genomes. Telomeric repeat analysis identified putative chromosomes in our scaffolded assembly, with these repeats at either one, or both ends, of scaffolded contigs. We identified 32,172 protein coding genes in our assembly through use of long-read RNA sequencing (ISO-seq) of additional O. faveolata fragments exposed to a range of abiotic and biotic treatments, and publicly available short-read RNA-seq data. With anthropogenic influences heavily affecting O. faveolata, as well as its increasing incorporation into reef restoration activities, this updated genome resource can be used for population genomics and other 'omics analyses to aid in the conservation of this species.


Asunto(s)
Antozoos , Transcriptoma , Animales , Análisis de Secuencia de ADN/métodos , Antozoos/genética , Genoma , Región del Caribe , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
Genome Biol Evol ; 15(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38035778

RESUMEN

The cluster of differentiation 36 (CD36) domain defines the characteristic ectodomain associated with class B scavenger receptor (SR-B) proteins. In bilaterians, SR-Bs play critical roles in diverse biological processes including innate immunity functions such as pathogen recognition and apoptotic cell clearance, as well as metabolic sensing associated with fatty acid uptake and cholesterol transport. Although previous studies suggest this protein family is ancient, SR-B diversity across Eukarya has not been robustly characterized. We analyzed SR-B homologs identified from the genomes and transcriptomes of 165 diverse eukaryotic species. The presence of highly conserved amino acid motifs across major eukaryotic supergroups supports the presence of a SR-B homolog in the last eukaryotic common ancestor. Our comparative analyses of SR-B protein structure identify the retention of a canonical asymmetric beta barrel tertiary structure within the CD36 ectodomain across Eukarya. We also identify multiple instances of independent lineage-specific sequence expansions in the apex region of the CD36 ectodomain-a region functionally associated with ligand-sensing. We hypothesize that a combination of both sequence expansion and structural variation in the CD36 apex region may reflect the evolution of SR-B ligand-sensing specificity between diverse eukaryotic clades.


Asunto(s)
Antígenos CD36 , Eucariontes , Antígenos CD36/genética , Antígenos CD36/química , Antígenos CD36/metabolismo , Ligandos , Filogenia , Receptores Depuradores de Clase B/metabolismo , Eucariontes/metabolismo
4.
Mol Ecol ; 32(16): 4677-4694, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37317893

RESUMEN

Corals are important models for understanding invertebrate host-microbe interactions; however, to fully discern mechanisms involved in these relationships, experimental approaches for manipulating coral-bacteria associations are needed. Coral-associated bacteria affect holobiont health via nutrient cycling, metabolic exchanges and pathogen exclusion, yet it is not fully understood how bacterial community shifts affect holobiont health and physiology. In this study, a combination of antibiotics (ampicillin, streptomycin and ciprofloxacin) was used to disrupt the bacterial communities of 14 colonies of the reef framework-building corals Pocillopora meandrina and P. verrucosa, originally collected from Panama and hosting diverse algal symbionts (family Symbiodiniaceae). Symbiodiniaceae photochemical efficiencies and holobiont oxygen consumption (as proxies for coral health) were measured throughout a 5-day exposure. Antibiotics altered bacterial community composition and reduced alpha and beta diversity, however, several bacteria persisted, leading to the hypothesis that these bacteria are either antibiotics resistant or occupy internal niches that are shielded from antibiotics. While antibiotics did not affect Symbiodiniaceae photochemical efficiency, antibiotics-treated corals had lower oxygen consumption rates. RNAseq revealed that antibiotics increased expression of Pocillopora immunity and stress response genes at the expense of cellular maintenance and metabolism functions. Together, these results reveal that antibiotic disruption of corals' native bacteria negatively impacts holobiont health by decreasing oxygen consumption and activating host immunity without directly impairing Symbiodiniaceae photosynthesis, underscoring the critical role of coral-associated bacteria in holobiont health. They also provide a baseline for future experiments that manipulate Pocillopora corals' symbioses by first reducing the diversity and complexity of coral-associated bacteria.


Asunto(s)
Antozoos , Dinoflagelados , Microbiota , Animales , Antozoos/genética , Antozoos/microbiología , Antibacterianos/farmacología , Microbiota/genética , Simbiosis/genética , Bacterias/genética , Consumo de Oxígeno , Dinoflagelados/genética , Expresión Génica , Arrecifes de Coral
5.
PLoS One ; 18(5): e0286293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228141

RESUMEN

Reef-building corals contain a complex consortium of organisms, a holobiont, which responds dynamically to disease, making pathogen identification difficult. While coral transcriptomics and microbiome communities have previously been characterized, similarities and differences in their responses to different pathogenic sources has not yet been assessed. In this study, we inoculated four genets of the Caribbean branching coral Acropora palmata with a known coral pathogen (Serratia marcescens) and white band disease. We then characterized the coral's transcriptomic and prokaryotic microbiomes' (prokaryiome) responses to the disease inoculations, as well as how these responses were affected by a short-term heat stress prior to disease inoculation. We found strong commonality in both the transcriptomic and prokaryiomes responses, regardless of disease inoculation. Differences, however, were observed between inoculated corals that either remained healthy or developed active disease signs. Transcriptomic co-expression analysis identified that corals inoculated with disease increased gene expression of immune, wound healing, and fatty acid metabolic processes. Co-abundance analysis of the prokaryiome identified sets of both healthy-and-disease-state bacteria, while co-expression analysis of the prokaryiomes' inferred metagenomic function revealed infected corals' prokaryiomes shifted from free-living to biofilm states, as well as increasing metabolic processes. The short-term heat stress did not increase disease susceptibility for any of the four genets with any of the disease inoculations, and there was only a weak effect captured in the coral hosts' transcriptomic and prokaryiomes response. Genet identity, however, was a major driver of the transcriptomic variance, primarily due to differences in baseline immune gene expression. Despite genotypic differences in baseline gene expression, we have identified a common response for components of the coral holobiont to different disease inoculations. This work has identified genes and prokaryiome members that can be focused on for future coral disease work, specifically, putative disease diagnostic tools.


Asunto(s)
Antozoos , Microbiota , Animales , Viverridae/genética , Antozoos/genética , Antozoos/microbiología , Microbiota/genética , Perfilación de la Expresión Génica , Serratia marcescens/genética , Arrecifes de Coral
6.
Methods Mol Biol ; 2450: 359-371, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359318

RESUMEN

Scleractinians, or stony corals, are colonial animals that possess a high regenerative capacity and a highly diverse innate immune system. As such they present the opportunity to investigate the interconnection between regeneration and immunity in a colonial animal. Understanding the relationship between regeneration and immunity in stony corals is of further interest as it has major implications for coral reef health. One method for understanding the role of innate immunity in scleractinian regeneration is in situ hybridization using RNA probes. Here we describe a protocol for in situ hybridization in adult stony corals using a digoxigenin (DIG)-labeled RNA antisense probe which can be utilized to investigate the spatial expression of immune factors during regeneration.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Antozoos/metabolismo , Digoxigenina/metabolismo , Expresión Génica , Hibridación in Situ , Sondas ARN/metabolismo
8.
Front Immunol ; 13: 1016097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618389

RESUMEN

Climate change induced heat stress has increased coral bleaching events worldwide. Differentially regulated immune genes are one of the primary responses to heat stress suggesting that immune activation is critical. However, the cellular immune mechanisms of coral bleaching is currently unknown, and it is still not known if the immune response documented during heat stress is a consequence of bleaching or is directly caused by the heat stress itself. To address this question, we have used two model system sea anemones (Order: Actiniaria): Exaiptasia diaphana and Nematostella vectensis. E. diaphana is an established sea anemone model for algal symbiont interaction, while N. vectensis is an established sea anemone model that lacks the algal symbiont. Here, we examined the effect of increased temperature on phagocytic activity, as an indication of immune function. Our data shows that immune cell activity increases during heat stress, while small molecule pinocytosis remains unaffected. We observed an increase in cellular production of reactive oxygen species with increasing temperatures. We also found that the cellular immune activity was not affected by the presence of the Symbiodiniaceae. Our results suggest that the immune activity observed in heat-stress induced bleaching in corals is a fundamental and basic response independent of the bleaching effect. These results establish a foundation for improving our understanding of hexacorallian immune cell biology, and its potential role in coral bleaching.


Asunto(s)
Antozoos , Anémonas de Mar , Animales , Anémonas de Mar/fisiología , Respuesta al Choque Térmico , Temperatura , Especies Reactivas de Oxígeno
9.
Front Immunol ; 12: 662803, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381444

RESUMEN

Phagocytosis is the cellular defense mechanism used to eliminate antigens derived from dysregulated or damaged cells, and microbial pathogens. Phagocytosis is therefore a pillar of innate immunity, whereby foreign particles are engulfed and degraded in lysolitic vesicles. In hexacorallians, phagocytic mechanisms are poorly understood, though putative anthozoan phagocytic cells (amoebocytes) have been identified histologically. We identify and characterize phagocytes from the coral Pocillopora damicornis and the sea anemone Nematostella vectensis. Using fluorescence-activated cell sorting and microscopy, we show that distinct populations of phagocytic cells engulf bacteria, fungal antigens, and beads. In addition to pathogenic antigens, we show that phagocytic cells engulf self, damaged cells. We show that target antigens localize to low pH phagolysosomes, and that degradation is occurring within them. Inhibiting actin filament rearrangement interferes with efficient particle phagocytosis but does not affect small molecule pinocytosis. We also demonstrate that cellular markers for lysolitic vesicles and reactive oxygen species (ROS) correlate with hexacorallian phagocytes. These results establish a foundation for improving our understanding of hexacorallian immune cell biology.


Asunto(s)
Antozoos/inmunología , Fagocitos/inmunología , Animales , Antozoos/metabolismo , Biomarcadores , Citocinas/metabolismo , Vesículas Citoplasmáticas/metabolismo , Citometría de Flujo , Concentración de Iones de Hidrógeno , Inmunidad Innata , Fagocitos/citología , Fagocitos/metabolismo , Fagocitosis/inmunología , Fagosomas , Anémonas de Mar
10.
PLoS Biol ; 19(6): e3001282, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34129646

RESUMEN

Success and impact metrics in science are based on a system that perpetuates sexist and racist "rewards" by prioritizing citations and impact factors. These metrics are flawed and biased against already marginalized groups and fail to accurately capture the breadth of individuals' meaningful scientific impacts. We advocate shifting this outdated value system to advance science through principles of justice, equity, diversity, and inclusion. We outline pathways for a paradigm shift in scientific values based on multidimensional mentorship and promoting mentee well-being. These actions will require collective efforts supported by academic leaders and administrators to drive essential systemic change.


Asunto(s)
Recompensa , Ciencia , Sesgo , Diversidad Cultural , Humanos , Tutoría
12.
Cell ; 184(11): 2802-2804, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34048702

RESUMEN

Coral reefs are one of the most important ecosystems in the world but least understood from a cellular level. In this issue of Cell, Levy et al. unravel the single-cell gene expression of the coral holobiont and open the doors to better understand the novel diversity of cell types.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Arrecifes de Coral , Ecosistema
13.
PLoS Biol ; 19(3): e3001100, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690708

RESUMEN

The issues facing academic mothers have been discussed for decades. Coronavirus Disease 2019 (COVID-19) is further exposing these inequalities as womxn scientists who are parenting while also engaging in a combination of academic related duties are falling behind. These inequities can be solved by investing strategically in solutions. Here we describe strategies that would ensure a more equitable academy for working mothers now and in the future. While the data are clear that mothers are being disproportionately impacted by COVID-19, many groups could benefit from these strategies. Rather than rebuilding what we once knew, let us be the architects of a new world.


Asunto(s)
COVID-19/epidemiología , Madres/estadística & datos numéricos , Investigadores/estadística & datos numéricos , Sexismo/estadística & datos numéricos , Enseñanza/estadística & datos numéricos , COVID-19/economía , COVID-19/psicología , Femenino , Humanos , Madres/psicología , Responsabilidad Parental/psicología , Responsabilidad Parental/tendencias , SARS-CoV-2/aislamiento & purificación , Sexismo/psicología , Sexismo/tendencias
14.
Sci Rep ; 11(1): 4086, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603013

RESUMEN

Cnidarians are emerging model organisms for cell and molecular biology research. However, successful cell culture development has been challenging due to incomplete tissue dissociation and contamination. In this report, we developed and tested several different methodologies to culture primary cells from all tissues of two species of Cnidaria: Nematostella vectensis and Pocillopora damicornis. In over 170 replicated cell cultures, we demonstrate that physical dissociation was the most successful method for viable and diverse N. vectensis cells while antibiotic-assisted dissociation was most successful for viable and diverse P. damicornis cells. We also demonstrate that a rigorous antibiotic pretreatment results in less initial contamination in cell cultures. Primary cultures of both species averaged 12-13 days of viability, showed proliferation, and maintained high cell diversity including cnidocytes, nematosomes, putative gastrodermal, and epidermal cells. Overall, this work will contribute a needed tool for furthering functional cell biology experiments in Cnidaria.


Asunto(s)
Antozoos/citología , Técnicas de Cultivo de Célula/métodos , Células Cultivadas/metabolismo , Anémonas de Mar/citología , Animales , Supervivencia Celular
15.
FEMS Microbiol Lett ; 368(3)2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33417693

RESUMEN

Sampling of different body regions can reveal highly specialized bacterial associations within the holobiont and facilitate identification of core microbial symbionts that would otherwise be overlooked by bulk sampling methods. Here, we characterized compartment-specific associations present within the model cnidarian Nematostella vectensis by dividing its morphology into three distinct microhabitats. This sampling design allowed us to uncover a capitulum-specific dominance of spirochetes within N. vectensis. Bacteria from the family Spirochaetaceae made up 66% of the community in the capitulum, while only representing 1.2% and 0.1% of the communities in the mesenteries and physa, respectively. A phylogenetic analysis of the predominant spirochete sequence recovered from N. vectensis showed a close relation to spirochetes previously recovered from wild N. vectensis. These sequences clustered closer to the recently described genus Oceanispirochaeta, rather than Spirochaeta perfilievii, supporting them as members of this clade. This suggests a prevalent and yet uncharacterized association between N. vectensis and spirochetes from the order Spirochaetales.


Asunto(s)
Bacterias/clasificación , Interacciones Microbiota-Huesped/fisiología , Anémonas de Mar/microbiología , Spirochaetales/genética , Animales , Bacterias/genética , Biodiversidad , Microbiota/genética , Filogenia
17.
PLoS One ; 15(10): e0228514, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33091033

RESUMEN

Coral disease outbreaks are expected to increase in prevalence, frequency and severity due to climate change and other anthropogenic stressors. This is especially worrying for the Caribbean branching coral Acropora palmata which has already seen an 80% decrease in cover primarily due to disease. Despite the importance of this keystone species, there has yet to be a characterization of its transcriptomic response to disease exposure. In this study we provide the first transcriptomic analysis of 12 A. palmata genotypes and their symbiont Symbiodiniaceae exposed to disease in 2016 and 2017. Year was the primary driver of gene expression variance for A. palmata and the Symbiodiniaceae. We hypothesize that lower expression of ribosomal genes in the coral, and higher expression of transmembrane ion transport genes in the Symbiodiniaceae indicate that a compensation or dysbiosis may be occurring between host and symbiont. Disease response was the second driver of gene expression variance for A. palmata and included a core set of 422 genes that were significantly differentially expressed. Of these, 2 genes (a predicted cyclin-dependent kinase 11b and aspartate 1-decarboxylase) showed negative Log2 fold changes in corals showing transmission of disease, and positive Log2 fold changes in corals showing no transmission of disease, indicating that these may be important in disease resistance. Co-expression analysis identified two modules positively correlated to disease exposure, one enriched for lipid biosynthesis genes, and the other enriched in innate immune genes. The hub gene in the immune module was identified as D-amino acid oxidase, a gene implicated in phagocytosis and microbiome homeostasis. The role of D-amino acid oxidase in coral immunity has not been characterized but could be an important enzyme for responding to disease. Our results indicate that A. palmata mounts a core immune response to disease exposure despite differences in the disease type and virulence between 2016 and 2017. These identified genes may be important for future biomarker development in this Caribbean keystone species.


Asunto(s)
Alveolados/genética , Antozoos/parasitología , Perfilación de la Expresión Génica/veterinaria , Inmunidad Innata , Animales , Antozoos/genética , Antozoos/inmunología , Cambio Climático , Regulación de la Expresión Génica , Genotipo , Proteínas Protozoarias/genética , Proteínas Ribosómicas/genética , Simbiosis
18.
Front Immunol ; 11: 1690, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849589

RESUMEN

The invertebrate innate immune system is surprisingly complex, yet our knowledge is limited to a few select model systems. One understudied group is the phylum Cnidaria (corals, sea anemones, etc.). Cnidarians are the sister group to Bilateria and by studying their innate immunity repertoire, a better understanding of the ancestral state can be gained. Corals in particular have evolved a highly diverse innate immune system that can uncover evolutionarily basal functions of conserved genes and proteins. One rudimentary function of the innate immune system is defense against harmful bacteria using pore forming proteins. Macrophage expressed gene 1/Perforin-2 protein (Mpeg-1/P2) is a particularly important pore forming molecule as demonstrated by previous studies in humans and mice, and limited studies in non-bilaterians. However, in cnidarians, little is known about Mpeg-1/P2. In this perspective article, we will summarize the current state of knowledge of Mpeg-1/P2 in invertebrates, analyze identified Mpeg-1/P2 homologs in cnidarians, and demonstrate the evolutionary diversity of this gene family using phylogenetic analysis. We will also show that Mpeg-1 is upregulated in one species of stony coral in response to lipopolysaccharides and downregulated in another species of stony coral in response to white band disease. This data presents evidence that Mpeg-1/P2 is conserved in cnidarians and we hypothesize that it plays an important role in cnidarian innate immunity. We propose that future research focus on the function of Mpeg-1/P2 family in cnidarians to identify its primary role in innate immunity and beyond.


Asunto(s)
Cnidarios/metabolismo , Evolución Molecular , Inmunidad Innata , Filogenia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Secuencia de Aminoácidos , Animales , Cnidarios/genética , Cnidarios/inmunología , Secuencia Conservada , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Inmunidad Innata/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Conformación Proteica , Relación Estructura-Actividad
19.
J Vis Exp ; (159)2020 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-32538898

RESUMEN

Coral reefs are under threat due to anthropogenic stressors. The biological response of coral to these stressors may occur at a cellular level, but the mechanisms are not well understood. To investigate coral response to stressors, we need tools for analyzing cellular responses. In particular, we need tools that facilitate the application of functional assays to better understand how cell populations are reacting to stress. In the current study, we use fluorescence-activated cell sorting (FACS) to isolate and separate different cell populations in stony corals. This protocol includes: (1) the separation of coral tissues from the skeleton, (2) creation of a single cell suspension, (3) labeling the coral cells using various markers for flow cytometry, and (4) gating and cell sorting strategies. This method will enable researchers to work on corals at the cellular level for analysis, functional assays, and gene expression studies of different cell populations.


Asunto(s)
Antozoos/citología , Animales , Antozoos/metabolismo , Antozoos/fisiología , Biomarcadores/metabolismo , Separación Celular , Citometría de Flujo , Estrés Fisiológico
20.
Dev Comp Immunol ; 109: 103717, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32348787

RESUMEN

Corals are comprised of a coral host and associated microbes whose interactions are mediated by the coral innate immune system. The diversity of immune factors identified in the Pocillopora damicornis genome suggests that immunity is linked to maintaining microbial symbioses while also being able to detect pathogens. However, it is unclear which immune factors respond to specific microbe-associated molecular patterns and how these immune reactions simultaneously affect coral-associated bacteria. To investigate this, fragments of P. damicornis and P. acuta colonies from Taiwan were subjected to lipopolysaccharide (LPS) treatment to stimulate immune responses and measure bacteria community shifts. RNA-seq revealed genotype-specific immune responses to LPS involving the upregulation of immune receptors, transcription factors, and pore-forming toxins. Bacteria 16S sequencing revealed significantly different bacteria communities between coral genotypes but no differences in bacteria communities were caused by LPS. Our findings confirm that Pocillopora corals activate conserved immune factors in response to LPS and identify transcription factors coordinating Pocillopora corals' immune responses. Additionally, the strong effect of coral genotype on gene expression and bacteria communities highlights the importance of coral genotype in the investigation of coral host-microbe interactions.


Asunto(s)
Antozoos/inmunología , Arrecifes de Coral , Inmunidad/efectos de los fármacos , Lipopolisacáridos/farmacología , Animales , Antozoos/genética , Antozoos/microbiología , Bacterias/clasificación , Bacterias/genética , Ecosistema , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Genotipo , Interacciones Microbiota-Huesped/genética , Inmunidad/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...