Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640339

RESUMEN

Sickle cell disease (SCD) is a hereditary hemoglobinopathy marked by hemolytic anemia and vaso-occlusive events (VOE). Chronic endothelial activation, inflammation, and coagulation activation contribute to vascular congestion, VOE, and end-organ damage. Coagulation proteases like thrombin and activated protein C (APC) modulate inflammation and endothelial dysfunction by activating protease-activated receptor 1 (PAR1), a G-protein coupled receptor. Thrombin cleaves PAR1 at Arg41, while APC cleaves PAR1 at Arg46, initiating either pro-inflammatory or cytoprotective signaling, respectively, a signaling conundrum known as biased agonism. Our prior research established the role of thrombin and PAR1 in vascular stasis in an SCD mouse model. However, the role of APC and APC-biased PAR1 signaling in thrombin generation, inflammation and endothelial activation in SCD remains unexplored. Inhibition of APC in SCD mice increased thrombin generation, inflammation, and endothelial activation during both steady state and TNFα challenge. To dissect the individual contributions of thrombin-PAR1 and APC-PAR1 signaling, we employed transgenic mice with point mutations at two PAR1 cleavage sites, ArgR41Gln (R41Q) imparting insensitivity to thrombin and Arg46Gln (R46Q) imparting insensitivity to APC. Sickle bone marrow chimeras expressing PAR1-R41Q exhibited reduced thrombo-inflammatory responses compared to PAR1-WT or PAR1-R46Q mice. These findings highlight the potential benefit of reducing thrombin-dependent PAR1 activation while preserving APC-PAR1 signaling in SCD thromboinflammation. These results also suggest that pharmacological strategies promoting biased PAR1 signaling could effectively mitigate vascular complications associated with SCD.

2.
Blood ; 141(15): 1871-1883, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36706361

RESUMEN

A hypercoagulable state, chronic inflammation, and increased risk of venous thrombosis and stroke are prominent features in patients with sickle cell disease (SCD). Coagulation factor XII (FXII) triggers activation of the contact system that is known to be involved in both thrombosis and inflammation, but not in physiological hemostasis. Therefore, we investigated whether FXII contributes to the prothrombotic and inflammatory complications associated with SCD. We found that when compared with healthy controls, patients with SCD exhibit increased circulating biomarkers of FXII activation that are associated with increased activation of the contact pathway. We also found that FXII, but not tissue factor, contributes to enhanced thrombin generation and systemic inflammation observed in sickle cell mice challenged with tumor necrosis factor α. In addition, FXII inhibition significantly reduced experimental venous thrombosis, congestion, and microvascular stasis in a mouse model of SCD. Moreover, inhibition of FXII attenuated brain damage and reduced neutrophil adhesion to the brain vasculature of sickle cell mice after ischemia/reperfusion induced by transient middle cerebral artery occlusion. Finally, we found higher FXII, urokinase plasminogen activator receptor, and αMß2 integrin expression in neutrophils of patients with SCD compared with healthy controls. Our data indicate that targeting FXII effectively reduces experimental thromboinflammation and vascular complications in a mouse model of SCD, suggesting that FXII inhibition may provide a safe approach for interference with inflammation, thrombotic complications, and vaso-occlusion in patients with SCD.


Asunto(s)
Anemia de Células Falciformes , Factor XII , Animales , Ratones , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/metabolismo , Factor XII/metabolismo , Inflamación , Accidente Cerebrovascular , Trombosis/metabolismo
3.
Neurobiol Dis ; 145: 105058, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32835860

RESUMEN

Background While significant advances have been made in uncovering the aetiology of Alzheimer's disease and related dementias at the genetic level, molecular events at the epigenetic level remain largely undefined. Emerging evidence indicates that small non-coding RNAs (sncRNAs) and their associated RNA modifications are important regulators of complex physiological and pathological processes, including aging, stress responses, and epigenetic inheritance. However, whether small RNAs and their modifications are altered in dementia is not known. Methods We performed LC-MS/MS-based, high-throughput assays of small RNA modifications in post-mortem samples of the prefrontal lobe cortices of Alzheimer's disease (AD) and control individuals. We noted that some of the AD patients has co-occurring vascular cognitive impairment-related pathology (VaD). Findings We report altered small RNA modifications in AD samples compared with normal controls. The 15-25-nucleotide (nt) RNA fraction of these samples was enriched for microRNAs, whereas the 30-40-nt RNA fraction was enriched for tRNA-derived small RNAs (tsRNAs), rRNA-derived small RNAs (rsRNAs), and YRNA-derived small RNAs (ysRNAs). Interestingly, most of these altered RNA modifications were detected both in the AD and AD with co-occurring vascular dementia subjects. In addition, sequencing of small RNA in the 30-40-nt fraction from AD cortices revealed reductions in rsRNA-5S, tsRNA-Tyr, and tsRNA-Arg. Interpretation These data suggest that sncRNAs and their associated modifications are novel signals that may be linked to the pathogenesis and development of Alzheimer's disease. Fund NIH grants (R01HL122770, R01HL091905, 1P20GM130459, R01HD092431, P50HD098593, GM103440), AHA grant (17IRG33370128), Sigmund Gestetner Foundation Fellowship to P Kehoe.


Asunto(s)
Enfermedad de Alzheimer/patología , Corteza Prefrontal/patología , ARN Pequeño no Traducido/análisis , ARN Pequeño no Traducido/genética , Anciano de 80 o más Años , Femenino , Humanos , Masculino
4.
Physiol Genomics ; 52(3): 133-142, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31961762

RESUMEN

High salt (sodium) intake leads to the development of hypertension despite the fact that plasma sodium concentration ([Na+]) is usually normal in hypertensive human patients. Increased cerebrospinal fluid (CSF) sodium contributes to elevated sympathetic activity and high blood pressure (BP) in rodent models of hypertension. However, whether there is an increased accumulation of sodium in the CSF of humans with chronic hypertension is not well defined. Here, we investigated CSF [Na+] from hypertensive and normotensive human subjects with family histories of Alzheimer's disease in samples collected in a clinical trial, as spinal tap is not a routine clinical procedure for hypertensive patients. The [Na+] and osmolality in plasma and CSF were measured by flame photometry. Daytime ambulatory BP was monitored while individuals were awake. Participants were deidentified and data were analyzed in conjunction with a retrospective analysis of patient history and diagnosis. We found that CSF [Na+] was significantly higher in participants with high BP compared with normotensive participants; there was no difference in plasma [Na+], or plasma and CSF osmolality between groups. Subsequent multiple linear regression analyses controlling for age, sex, race, and body mass index revealed a significant positive correlation between CSF [Na+] and BP but showed no correlation between plasma [Na+] and BP. In sum, CSF [Na+] was higher in chronic hypertensive individuals and may play a key role in the pathogenesis of human hypertension. Collectively, our findings provide evidence for the clinical significance of CSF [Na+] in chronic hypertension in humans.


Asunto(s)
Enfermedad de Alzheimer , Hipertensión/sangre , Hipertensión/líquido cefalorraquídeo , Anamnesis , Sodio/sangre , Sodio/líquido cefalorraquídeo , Anciano , Presión Sanguínea , Femenino , Georgia/epidemiología , Humanos , Hipertensión/inducido químicamente , Hipertensión/epidemiología , Incidencia , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores Sexuales , Cloruro de Sodio Dietético/efectos adversos
5.
Am J Physiol Heart Circ Physiol ; 316(6): H1389-H1405, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30925093

RESUMEN

Activation of the brain renin-angiotensin system (RAS) is a pivotal step in the pathogenesis of hypertension. The paraventricular nucleus (PVN) of the hypothalamus is a critical part of the angiotensinergic sympatho-excitatory neuronal network involved in neural control of blood pressure and hypertension. However, the importance of the PVN (pro)renin receptor (PVN-PRR)-a key component of the brain RAS-in hypertension development has not been examined. In this study, we investigated the involvement and mechanisms of the PVN-PRR in DOCA-salt-induced hypertension, a mouse model of hypertension. Using nanoinjection of adeno-associated virus-mediated Cre recombinase expression to knock down the PRR specifically in the PVN, we report here that PVN-PRR knockdown attenuated the enhanced blood pressure and sympathetic tone associated with hypertension. Mechanistically, we found that PVN-PRR knockdown was associated with reduced activation of ERK (extracellular signal-regulated kinase)-1/2 in the PVN and rostral ventrolateral medulla during hypertension. In addition, using the genetically encoded Ca2+ biosensor GCaMP6 to monitor Ca2+-signaling events in the neurons of PVN brain slices, we identified a reduction in angiotensin II type 1 receptor-mediated Ca2+ activity as part of the mechanism by which PVN-PRR knockdown attenuates hypertension. Our study demonstrates an essential role of the PRR in PVN neurons in hypertension through regulation of ERK1/2 activation and angiotensin II type 1 receptor-mediated Ca2+ activity. NEW & NOTEWORTHY PRR knockdown in PVN neurons attenuates the development of DOCA-salt hypertension and autonomic dysfunction through a decrease in ERK1/2 activation in the PVN and RVLM during hypertension. In addition, PRR knockdown reduced AT1aR expression and AT1R-mediated calcium activity during hypertension. Furthermore, we characterized the neuronal targeting specificity of AAV serotype 2 in the mouse PVN and validated the advantages of the genetically encoded calcium biosensor GCaMP6 in visualizing neuronal calcium activity in the PVN.


Asunto(s)
Presión Sanguínea , Señalización del Calcio , Hipertensión/prevención & control , Neuronas/enzimología , Núcleo Hipotalámico Paraventricular/enzimología , ATPasas de Translocación de Protón/deficiencia , Receptor de Angiotensina Tipo 1/metabolismo , Receptores de Superficie Celular/deficiencia , Animales , Sistema Nervioso Autónomo/metabolismo , Sistema Nervioso Autónomo/fisiopatología , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Acetato de Desoxicorticosterona , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Hipertensión/enzimología , Hipertensión/genética , Hipertensión/fisiopatología , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Núcleo Hipotalámico Paraventricular/fisiopatología , Fosforilación , ATPasas de Translocación de Protón/genética , Receptor de Angiotensina Tipo 1/genética , Receptores de Superficie Celular/genética , Receptor de Prorenina
6.
Physiol Genomics ; 50(10): 904-912, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30142028

RESUMEN

Increased sodium appetite is a physiological response to sodium deficiency; however, it has also been implicated in disease conditions such as congestive heart failure, kidney failure, and salt-sensitive hypertension. The central nervous system is the major regulator of sodium appetite and intake behavior; however, the neural mechanisms underlying this behavior remain incompletely understood. Here, we investigated the involvement of the (pro)renin receptor (PRR), a component of the brain renin-angiotensin system, in the regulation of sodium intake in a neuron-specific PRR knockout (PRRKO) mouse model generated previously in our laboratory. Sodium intake following deoxycorticosterone (DOCA) stimulation was tested by assessing the preference of mice for 0.9% saline or regular water in single-animal metabolic cages. Blood pressure was monitored in conscious, freely moving mice by a telemetry system. We found that saline intake and total fluid intake were significantly reduced in PRRKO mice following DOCA treatment compared with that in wild-type (WT) mice, whereas regular water intake was similar between the genotypes. Sodium preference and total sodium intake were significantly reduced in PRRKO mice compared with WT mice. PRRKO mice also excreted less urine and urinary sodium compared with WT mice following DOCA treatment, whereas potassium excretion was similar between the two groups. Finally, we found that the sodium balance, calculated by subtracting urinary sodium excretion from sodium intake, was greater in WT mice than in PRRKO mice. Collectively, these findings suggest that the neuronal PRR plays a regulatory role in DOCA-induced sodium intake.


Asunto(s)
Acetato de Desoxicorticosterona/administración & dosificación , Neuronas/metabolismo , Receptores de Superficie Celular/metabolismo , Sodio en la Dieta/administración & dosificación , Animales , Presión Sanguínea/efectos de los fármacos , Preferencias Alimentarias/efectos de los fármacos , Preferencias Alimentarias/fisiología , Hipertensión/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Potasio/orina , Receptores de Superficie Celular/genética , Sistema Renina-Angiotensina/fisiología , Sodio en la Dieta/orina , Receptor de Prorenina
7.
Neuroreport ; 28(16): 1049-1053, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-28902709

RESUMEN

EM66 is a peptide derived from the chromogranin, secretogranin II (SG-II). Recent findings in mice indicate that EM66 is a novel anorexigenic neuropeptide that regulates hypothalamic feeding behavior, at least in part, by activating the POMC neurons of the arcuate nucleus. The present study aimed to investigate the mechanism of action of EM66 in the control of feeding behavior and, more specifically, its potential interactions with the NPY and POMC systems in rat. We analyzed by Q-PCR the gene expression of the EM66 precursor, SG-II, in hypothalamic extracts following 2, 3, or 4 days of food deprivation and compared it with the expression levels of the two major neuropeptidergic systems, that is, POMC and NPY, modulating feeding behavior. Our results show that fasting for 2 and 3 days has no effect on SG-II mRNA levels. However, 4 days of food deprivation induced a significant alteration in the expression levels of the three genes studied, with a significant increase in SG-II and NPY mRNAs, and conversely, a significant decrease in POMC mRNA. These data indicate that the EM66 gene expression is modulated by a negative energy status and suggest interactions between EM66 and NPY to regulate food intake through the POMC system.


Asunto(s)
Conducta Alimentaria/fisiología , Privación de Alimentos , Hipotálamo/metabolismo , Neuropéptido Y/metabolismo , Proopiomelanocortina/metabolismo , Secretogranina II/metabolismo , Animales , Conducta Animal/fisiología , Expresión Génica/fisiología , Masculino , Fragmentos de Péptidos/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo
8.
Neurotoxicology ; 49: 165-73, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26141519

RESUMEN

The presence of mycotoxins in food is a major problem of public health as they produce immunosuppressive, hepatotoxic and neurotoxic effects. Mycotoxins also induce mutagenic and carcinogenic effects after long exposure. Among mycotoxins that contaminate food are aflatoxins (AF) such as AFB1, which is the most powerful natural carcinogen. The AF poisoning results in symptoms of depression, anorexia, diarrhea, jaundice or anemia that can lead to death, but very few studies have explored the impact of AF on neuroendocrine regulations. To better understand the neurotoxic effects of AF related to anorexia, we explored in rat the impact of AFB1 on the major hypothalamic neuropeptides regulating feeding behavior, either orexigenic (NPY, Orexin, AgRP, MCH) or anorexigenic (α-MSH, CART, TRH). We also studied the effect of AFB1 on a novel neuropeptide, the secretogranin II (SgII)-derived peptide EM66, which has recently been linked to the control of food intake. For this, adult male rats were orally treated twice a week for 5 weeks with a low dose (150 µg/kg) or a high dose (300 µg/kg) of AFB1 dissolved in corn oil. Repeated exposure to AFB1 resulted in reduced body weight gain, which was highly significant for the high dose of AF. Immunocytochemical and quantitative PCR experiments revealed a dose-related decrease in the expression of all the hypothalamic neuropeptides studied in response to AFB1. Such orexigenic and anorexigenic alterations may underlie appetite disorders as they are correlated to a dose-dependent decrease in body weight gain of treated rats as compared to controls. We also found a decrease in the number of EM66-containing neurons in the arcuate nucleus of AFB1-treated animals, which was associated with a lower expression of its precursor SgII. These findings show for the first time that repeated consumption of AFB1 disrupts the hypothalamic regulation of neuropeptides involved in feeding behavior, which may contribute to the lower body weight gain associated to AF exposure.


Asunto(s)
Aflatoxina B1/farmacología , Conducta Alimentaria/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Neuropéptidos/metabolismo , Venenos/farmacología , Análisis de Varianza , Animales , Peso Corporal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Neuropéptidos/genética , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...