Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 12(1): 8592, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35597778

RESUMEN

Land surface temperature (LST) is a preeminent state variable that controls the energy and water exchange between the Earth's surface and the atmosphere. At the landscape-scale, LST is derived from thermal infrared radiance measured using space-borne radiometers. In contrast, plot-scale LST estimation at flux tower sites is commonly based on the inversion of upwelling longwave radiation captured by tower-mounted radiometers, whereas the role of the downwelling longwave radiation component is often ignored. We found that neglecting the reflected downwelling longwave radiation leads not only to substantial bias in plot-scale LST estimation, but also have important implications for the estimation of surface emissivity on which LST is co-dependent. The present study proposes a novel method for simultaneous estimation of LST and emissivity at the plot-scale and addresses in detail the consequences of omitting down-welling longwave radiation as frequently done in the literature. Our analysis uses ten eddy covariance sites with different land cover types and found that the LST values obtained using both upwelling and downwelling longwave radiation components are 0.5-1.5 K lower than estimates using only upwelling longwave radiation. Furthermore, the proposed method helps identify inconsistencies between plot-scale radiometric and aerodynamic measurements, likely due to footprint mismatch between measurement approaches. We also found that such inconsistencies can be removed by slight corrections to the upwelling longwave component and subsequent energy balance closure, resulting in realistic estimates of surface emissivity and consistent relationships between energy fluxes and surface-air temperature differences. The correspondence between plot-scale LST and landscape-scale LST depends on site-specific characteristics, such as canopy density, sensor locations and viewing angles. Here we also quantify the uncertainty in plot-scale LST estimates due to uncertainty in tower-based measurements using the different methods. The results of this work have significant implications for the combined use of aerodynamic and radiometric measurements to understand the interactions and feedbacks between LST and surface-atmosphere exchange processes.


Asunto(s)
Atmósfera , Calor , Ondas de Radio , Temperatura , Agua
2.
ISME J ; 13(7): 1688-1699, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30833686

RESUMEN

Nitrous acid (HONO) is a precursor of the hydroxyl radical (OH), a key oxidant in the degradation of most air pollutants. Field measurements indicate a large unknown source of HONO during the day time. Release of nitrous acid (HONO) from soil has been suggested as a major source of atmospheric HONO. We hypothesize that nitrite produced by biological nitrate reduction in oxygen-limited microzones in wet soils is a source of such HONO. Indeed, we found that various contrasting soil samples emitted HONO at high water-holding capacity (75-140%), demonstrating this to be a widespread phenomenon. Supplemental nitrate stimulated HONO emissions, whereas ethanol (70% v/v) treatment to minimize microbial activities reduced HONO emissions by 80%, suggesting that nitrate-dependent biotic processes are the sources of HONO. High-throughput Illumina sequencing of 16S rRNA as well as functional gene transcripts associated with nitrate and nitrite reduction indicated that HONO emissions from soil samples were associated with nitrate reduction activities of diverse Proteobacteria. Incubation of pure cultures of bacterial nitrate reducers and gene-expression analyses, as well as the analyses of mutant strains deficient in nitrite reductases, showed positive correlations of HONO emissions with the capability of microbes to reduce nitrate to nitrite. Thus, we suggest biological nitrate reduction in oxygen-limited microzones as a hitherto unknown source of atmospheric HONO, affecting biogeochemical nitrogen cycling, atmospheric chemistry, and global modeling.


Asunto(s)
Bacterias/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Ácido Nitroso/metabolismo , Microbiología del Suelo , Suelo/química , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Nitratos/análisis , Nitritos/análisis , Ciclo del Nitrógeno , Oxidación-Reducción , Agua/análisis , Agua/metabolismo
3.
Environ Sci Technol ; 48(14): 8021-7, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24954648

RESUMEN

Gaseous nitrous acid (HONO), the protonated form of nitrite, contributes up to ∼60% to the primary formation of hydroxyl radical (OH), which is a key oxidant in the degradation of most air pollutants. Field measurements and modeling studies indicate a large unknown source of HONO during daytime. Here, we developed a new tracer method based on gas-phase stripping-derivatization coupled to liquid chromatography-mass spectrometry (LC-MS) to measure the 15N relative exceedance, ψ(15N), of HONO in the gas-phase. Gaseous HONO is quantitatively collected and transferred to an azo dye, purified by solid phase extraction (SPE), and analyzed using high performance liquid chromatography coupled to mass spectrometry (HPLC-MS). In the optimal working range of ψ(15N)=0.2-0.5, the relative standard deviation of ψ(15N) is <4%. The optimum pH and solvents for extraction by SPE and potential interferences are discussed. The method was applied to measure HO15NO emissions from soil in a dynamic chamber with and without spiking 15) labeled urea. The identification of HO15NO from soil with 15N urea addition confirmed biogenic emissions of HONO from soil. The method enables a new approach of studying the formation pathways of HONO and its role for atmospheric chemistry (e.g., ozone formation) and environmental tracer studies on the formation and conversion of gaseous HONO or aqueous NO2- as part of the biogeochemical nitrogen cycle, e.g., in the investigation of fertilization effects on soil HONO emissions and microbiological conversion of NO2- in the hydrosphere.


Asunto(s)
Gases/química , Marcaje Isotópico/métodos , Ácido Nitroso/análisis , Ácido Nitroso/química , Suelo/química , Compuestos Azo/química , Calibración , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Isótopos de Nitrógeno , Estándares de Referencia , Contaminantes del Suelo/análisis
4.
Science ; 333(6049): 1616-8, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21852453

RESUMEN

Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. Fertilized soils with low pH appear to be particularly strong sources of HONO and OH. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. Because of the widespread occurrence of nitrite-producing microbes, the release of HONO from soil may also be important in natural environments, including forests and boreal regions.


Asunto(s)
Atmósfera/química , Radical Hidroxilo/análisis , Nitritos/química , Nitritos/metabolismo , Ácido Nitroso/análisis , Microbiología del Suelo , Suelo/química , Agricultura , Ritmo Circadiano , Concentración de Iones de Hidrógeno , Radical Hidroxilo/química , Ácido Nitroso/química , Oxidación-Reducción , Fotólisis
5.
Environ Sci Technol ; 43(5): 1412-8, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19350912

RESUMEN

Here, we present a new automated instrument for semicontinuous gradient measurements of water-soluble reactive trace gas species (NH3, HNO3, HONO, HCl, and SO2) and their related aerosol compounds (NH4+, NO3-, Cl-, SO4(2-)). Gas and aerosol samples are collected simultaneously at two heights using rotating wet-annular denuders and steam-jet aerosol collectors, respectively. Online (real-time) analysis using ion chromatography (IC) for anions and flow injection analysis (FIA) for NH4+ and NH3 provide a half-hourly averaged gas and aerosol gradients within each hour. Through the use of syringe pumps, IC preconcentration columns, and high-quality purified water, the system achieves detection limits (3sigma-definition) under field conditions of typically: 136/207,135/114, 29/ 22,119/92, and 189/159 ng m(-3) for NH3/NH4+, HNO3/NO3-, HONO/ NO2-, HCl/Cl- and SO2/SO4(2-), respectively. The instrument demonstrates very good linearity and accuracy for liquid and selected gas phase calibrations over typical ambient concentration ranges. As shown by examples from field experiments, the instrument provides sufficient precision (3-9%), even at low ambient concentrations, to resolve vertical gradients and calculate surface-atmosphere exchange fluxes undertypical meteorological conditions of the atmospheric surface layer using the aerodynamic gradient technique.


Asunto(s)
Aerosoles/análisis , Atmósfera/química , Automatización/instrumentación , Química Inorgánica/instrumentación , Gases/análisis , Compuestos Inorgánicos/análisis , Agua/química , Amoníaco/análisis , Gravitación , Nitratos/análisis , Estándares de Referencia , Solubilidad , Soluciones , Propiedades de Superficie , Viento
6.
Acta amaz ; 34(4): 605-611, out.-dez. 2004. ilus, graf
Artículo en Portugués | LILACS | ID: lil-512638

RESUMEN

Mecanismos de vento local, tal como as brisas, influenciam o transporte e dispersão dos gases. Medidas da direção do vento e concentração de ozônio (O3) à 10 metros de altura foram realizadas durante a execução do projeto LBA/CLAIRE-2001 (Large Scale Biosphere-Atmosphere Experiment in Amazônia / Cooperative LBA Airbone Regional Experiment - 2001), no período de 02 a 28.07.2001, nas dependências do Laboratório de Limnologia (01° 55' S, 59°28' W, 174 m) pertencente à Usina Hidrelétrica de Balbina, Amazonas. O lago artificial tem uma área de 2.360 km², sendo suficientemente grande para estabelecer um regime de brisas. As brisas de lago e floresta apresentam-se de forma bem definidas, sendo que a brisa de lago fica melhor caracterizada no período mais quente do dia (10 às 14 horas), enquanto a brisa de floresta evidencia-se no período de 16 às 08 horas com o resfriamento radiativo mais intenso da floresta, o que acarreta um forte contraste térmico. Enquanto isso, a concentração média diária (24 h) de O3 foi de 8,7 ppbv com média de 10,6 ppbv no período diurno e 3,5 ppbv no período noturno. Os resultados também indicaram que quando a brisa é de lago, mesmo a noturna, a concentração de O3 é muito maior do que correspondente a concentração referente a brisa de floresta.


Local wind systems, such as sea or lake breezes, strongly affect the transport and dispersion of atmospheric trace gases. Based on its size and location, the artificial lake of Balbina in the Amazon - can be expected to give rise to a lake/forest breeze regime. During the period 2 to 28 July 2002, within the LBA/CLAIRE-2001 experiment, we have continually measured the ozone concentrations (O3) and the wind directions close to the Balbina dam. We found that there is indeed a well established breeze system, with lake breezes prevailing during mid-day (10 to 14 LT) while forest breezes prevail from the afternoon to early morning (16 to 8 LT). During the latter period radioactive cooling in the forest creates a strong local thermal contrast. The average daily ozone concentration was 8.7 ppbv, with an average of 10.6 ppbv during the day, and 3.5 ppbv at night. When local winds came from the lake, even at night, ozone concentrations were greater compared to breezes coming from the forest.


Asunto(s)
Clima , Ecosistema Amazónico , Ciclo del Carbono , Conceptos Meteorológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...