Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 897: 165424, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429466

RESUMEN

In Secovlje Salina Nature Park, the therapeutic mud matured in the natural sedimentary environmental site. This work aimed to determine the influence of the peloid maturation process on the hydrocarbon and elemental distributions, as well as changes in morphology. For this purpose, the sample before and after maturation was examined using various methods. n-Alkanes were the most abundant among saturated hydrocarbons in both immature and mature peloid samples. The results showed that the maturation mainly influenced the change in distribution and concentration (from 378 to 1958 ppm) of n-alkanes. The organic matter (OM) of the immature peloid sample was characterized by a slight prevalence of long-chain and odd carbon-numbered n-alkanes, maximizing at n-C27. However, mature peloid's OM showed a similar share of short-, mid- and long-chain n-alkanes with a slight dominance of short-chain members, maximizing at n-C16. The origin of short-chain and even carbon-numbered n-alkanes was attributed to microbial precursors (e.g., Leptolyngbyaceae). Hopanes were considerably more dominant compared to steranes in both peloids. The hopane series of immature peloid was characterized by the dominance of 22,29,30-trinor-hop-5(6)-ene (C27 hopene), as well as the presence of C30-hop-22(29)-ene (diploptene), which are widespread in cyanobacterial species. The aromatic fraction of immature peloid pointed to the predominance of polycyclic aromatic hydrocarbons (PAHs). As peloid aging progressed, the sample was richer in methyl-branched alkanes, carboxylic acids, their methyl esters, and thermodynamically more stable hopanes and steranes. The presence of elements with toxicological relevance during maturation was reduced below the limits prescribed in most of the directives for cosmetic products. It specifically refers to: As, Ni and Se. A higher concentration of total sulfur in the mature peloid can be related to gypsum precipitation in the summer and/or more intensive microbial activity.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos , Eslovenia , Hidrocarburos/análisis , Alcanos/análisis , Triterpenos Pentacíclicos , Carbono/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
2.
Anal Bioanal Chem ; 413(21): 5333-5347, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34235566

RESUMEN

Skin secretion represents the only means of defense for the majority of frog species. That phenomenon is based on the fact that the main components of the secretion are peptides demonstrating greatly varying types of bioactivity. They fulfill regulatory functions, fight microorganisms and may be even helpful against predators. These peptides are considered to be rather promising pharmaceuticals of future generation as according to the present knowledge microorganisms are unlikely to develop resistance to them. Mass spectrometry sequencing of these peptides is the most efficient first step of their study providing reliably their primary structures, i.e., amino acids sequence and S-S bond motif. Besides discovering new bioactive peptides, mass spectrometry appears to be an efficient tool of taxonomy studies, allowing for distinguishing not only between closely related species, but also between populations of the same species. Application of several tandem mass spectrometry tools (CID, HCD, ETD, EThcD) available with Orbitrap mass analyzer allowed us to obtain full sequence of about 60 peptides in the secretion of Slovenian population of brown ranid frog Rana temporaria. The problem of sequence inside C-terminal cycle formed by two Cys and differentiation of isomeric Leu and Ile residues was done in top-down mode without any derivatization steps. Besides general biomarkers of Rana temporaria species, Central Slovenian population of Rana temporaria demonstrates six novel temporins and one brevinin 1, which may be treated as biomarkers of that population.


Asunto(s)
Proteínas Anfibias/análisis , Péptidos Catiónicos Antimicrobianos/análisis , Rana temporaria , Secuencia de Aminoácidos , Animales , Moscú , Rana temporaria/metabolismo , Análisis de Secuencia de Proteína , Piel/química , Eslovenia , Especificidad de la Especie , Espectrometría de Masas en Tándem
3.
J Mass Spectrom ; 48(11): 1232-40, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24259212

RESUMEN

The fate of modern personal care products in the environment is becoming a matter of increasing concern because of the growing production and assortment of these compounds. More and more chemicals of this class are treated as emerging contaminants. Transformation of commercially available products in the environment may result in the formation of a wide array of their metabolites. Personal care products in swimming pools and in drinking water reservoirs may undergo oxidation or chlorination. There is much data on the formation of more toxic metabolites from original low toxicity commercial products. Therefore, reliable identification of all possible transformation products and a thorough study of their physicochemical and biological properties are of high priority. The present study deals with the identification of the products of the aquatic chlorination of the hexyl 2-[4-(diethylamino)-2-hydroxybenzoyl]-benzoate ultraviolet filter. High-performance liquid chromatography/mass spectrometry (HPLC/MS) and HPLC/MS/MS with accurate mass measurements were used for this purpose. As a result, three chlorinated transformation products were identified.


Asunto(s)
Benzoatos/química , Compuestos de Cloro/química , Hipoclorito de Sodio/química , Protectores Solares/química , Contaminantes Químicos del Agua/química , Benzoatos/análisis , Compuestos de Cloro/análisis , Cromatografía Liquida/métodos , Halogenación , Espectrometría de Masa por Ionización de Electrospray/métodos , Protectores Solares/análisis , Contaminantes Químicos del Agua/análisis
4.
Water Res ; 41(19): 4504-14, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17624398

RESUMEN

Malathion, one of the most widely applied insecticides, is still used in agriculture. There are many studies regarding its degradation under different experimental conditions, but few deal with its transformation products, i.e. malaoxon and isomalathion. Thus, malathion, malaoxon, isomalathion, and Radotion (one of its over 6000 commercial forms) were studied in terms of their degradation kinetics, identification of their transformation products, their toxicity, and their degree of mineralization, during UV photolysis (lambda = 254 nm) and TiO(2) photocatalysis (lambda = 355 nm). The degradation kinetics was similar for all four starting materials. More than 75% of theoretically expected sulfur in PS and P-S groups was oxidized after 240 min of photolysis and photocatalysis. On the other hand, less than 30% of stoichiometrically predicted amounts of phosphate was detected in the photolytic experiments, but more than 80% of expected phosphate was detected after photocatalytic treatment of all four organophosphorous materials. Several transformation products were identified by mass spectra of representative gas chromatographic peaks. Oxidation and isomerization were found as the main reactions of butenedioc acid diethyl esters and their analogs. The formation of malaoxon, isomalathion or trimethyl phosphate esters correlated well with the induced toxicity (inhibition of acetylcholinesterase), which was observed in photocatalysis of malathion and Radotion, and in photolysis of malaoxon and Radotion.


Asunto(s)
Malatión/análogos & derivados , Malatión/química , Malatión/toxicidad , Plaguicidas/química , Plaguicidas/toxicidad , Catálisis , Cromatografía Líquida de Alta Presión , Fotoquímica , Espectrofotometría Ultravioleta
5.
Chemosphere ; 67(1): 99-107, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17097717

RESUMEN

Four organophosphorus compounds: azinphos-methyl, chlorpyrifos, malathion and malaoxon in aqueous solution were degraded by using a 125 W xenon parabolic lamp. Gas chromatography-mass spectrometry (GC-MS) was used to monitor the disappearance of starting compounds and formation of degradation products as a function of time. AChE-thermal lens spectrometric bioassay was employed to assess the toxicity of photoproducts. The photodegradation kinetics can be described by a first-order degradation curve C=C0e(-kt), resulting in the following half lives: 2.5min for azinphos-methyl, 11.6 min for malathion, 13.3 min for chlorpyrifos and 45.5 min for malaoxon, under given experimental conditions. During the photoprocess several intermediates were identified by GC-MS suggesting the pathway of OP degradation. The oxidation of chlorpyrifos results in the formation of chlorpyrifos-oxon as the main identified photoproduct. In case of malathion and azinphos-methyl the corresponding oxon analogues were not detected. The formation of diethyl (dimethoxy-phosphoryl) succinate in traces was observed during photodegradation of malaoxon and malathion. Several other photoproducts including trimethyl phosphate esters, which are known to be AChE inhibitors and 1,2,3-benzotriazin-4(3H)-one as a member of triazine compounds were identified in photodegraded samples of malathion, malaoxon, and azinphos-methyl. Based on this, two main degradation pathways can be proposed, both result of the (P-S-C) bond cleavage taking place at the side of leaving group. The enhanced inhibition of AChE observed with the TLS bioassay during the initial 30 min of photodegradation in case of all four OPs, confirmed the formation of toxic intermediates. With the continuation of irradiation, the AChE inhibition decreased, indicating that the formed toxic compounds were further degraded to AChE non-inhibiting products. The presented results demonstrate the importance of toxicity monitoring during the degradation of OPs in processes of waste water remediation, before releasing it into the environment.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Insecticidas/química , Acetilcolinesterasa/metabolismo , Azinfosmetilo/química , Biodegradación Ambiental/efectos de la radiación , Cloropirifos/química , Inhibidores de la Colinesterasa/análisis , Cinética , Malatión/análogos & derivados , Malatión/química , Estructura Molecular , Fotoquímica/métodos , Triazinas/análisis
6.
Chemosphere ; 50(5): 595-601, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12685735

RESUMEN

Degradation of two model insecticides, diazinon and malathion, and their degradation products 2-isopropyl-6-methyl-4-pyrimidinol--IMP (diazinon hydrolysis product) and malaoxon (malathion oxidation product) was compared and studied in the environment. The pesticides and their metabolites were extracted from samples (water, soil, chicory) with ethyl acetate and subsequently the extracts were analyzed by GC/FID. It was shown that hydrolysis is the major process in the degradation of these pesticides in water. In fact, 95% of diazinon was degraded, and only 10% of malathion was oxidised. In soil 30% of diazinon exposed to the sunlight was decomposed by photolysis, whereas in soil left in the darkness no degradation products were observed. In soil left under environmental conditions, 90% of diazinon was degraded and 40% from its initial concentration was transformed into IMP. The concentrations of the pesticides after 21 days on chicory were under maximal allowable concentration, which is 0.5 ppm for malathion and for diazinon. The concentration of malaoxon was more than twice as high as the allowable value, which is for the sum of malathion and malaoxon 3 ppm.


Asunto(s)
Cichorium intybus/química , Diazinón/análisis , Insecticidas/análisis , Malatión/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Diazinón/química , Ionización de Llama , Insecticidas/química , Malatión/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...