Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Cell Metab ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38490209

RESUMEN

Diabetes represents a major public health concern with a considerable impact on human life and healthcare expenditures. It is now well established that diabetes is characterized by a severe skeletal muscle pathology that limits functional capacity and quality of life. Increasing evidence indicates that diabetes is also one of the most prevalent disorders characterized by impaired skeletal muscle regeneration, yet underlying mechanisms and therapeutic treatments remain poorly established. In this review, we describe the cellular and molecular alterations currently known to occur during skeletal muscle regeneration in people with diabetes and animal models of diabetes, including its associated comorbidities, e.g., obesity, hyperinsulinemia, and insulin resistance. We describe the role of myogenic and non-myogenic cell types on muscle regeneration in conditions with or without diabetes. Therapies for skeletal muscle regeneration and gaps in our knowledge are also discussed, while proposing future directions for the field.

2.
Nat Metab ; 6(3): 433-447, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38504132

RESUMEN

Mitochondrial dysfunction and low nicotinamide adenine dinucleotide (NAD+) levels are hallmarks of skeletal muscle ageing and sarcopenia1-3, but it is unclear whether these defects result from local changes or can be mediated by systemic or dietary cues. Here we report a functional link between circulating levels of the natural alkaloid trigonelline, which is structurally related to nicotinic acid4, NAD+ levels and muscle health in multiple species. In humans, serum trigonelline levels are reduced with sarcopenia and correlate positively with muscle strength and mitochondrial oxidative phosphorylation in skeletal muscle. Using naturally occurring and isotopically labelled trigonelline, we demonstrate that trigonelline incorporates into the NAD+ pool and increases NAD+ levels in Caenorhabditis elegans, mice and primary myotubes from healthy individuals and individuals with sarcopenia. Mechanistically, trigonelline does not activate GPR109A but is metabolized via the nicotinate phosphoribosyltransferase/Preiss-Handler pathway5,6 across models. In C. elegans, trigonelline improves mitochondrial respiration and biogenesis, reduces age-related muscle wasting and increases lifespan and mobility through an NAD+-dependent mechanism requiring sirtuin. Dietary trigonelline supplementation in male mice enhances muscle strength and prevents fatigue during ageing. Collectively, we identify nutritional supplementation of trigonelline as an NAD+-boosting strategy with therapeutic potential for age-associated muscle decline.


Asunto(s)
Alcaloides , Sarcopenia , Humanos , Masculino , Ratones , Animales , Sarcopenia/tratamiento farmacológico , Sarcopenia/prevención & control , Sarcopenia/metabolismo , NAD/metabolismo , Caenorhabditis elegans , Envejecimiento , Músculo Esquelético/metabolismo , Alcaloides/farmacología , Alcaloides/uso terapéutico , Alcaloides/metabolismo
3.
Metabolism ; 155: 155834, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38479569

RESUMEN

BACKGROUND: Circadian disruption is widespread and increases the risk of obesity. Timing of therapeutic interventions may promote coherent and efficient gating of metabolic processes and restore energy homeostasis. AIM: To characterize the diurnal postexercise metabolic state in mice and to identify the influence of diet-induced obesity on identified outcomes. METHODS: C57BL6/NTac male mice (6 wks of age) were fed a standard chow or high-fat diet for 5 weeks. At week 5, mice were subjected to a 60-min (16 m/min, 5 % incline) running bout (or sham) during the early rest (day) or early active (night) phase. Tissue and serum samples were collected immediately post-exercise (n = 6/group). In vivo glucose oxidation was measured after oral administration of 13C-glucose via 13CO2 exhalation analysis in metabolic cages. Basal and isoproterenol-stimulated adipose tissue lipolysis was assessed ex vivo for 1 h following exercise. RESULTS: Lean mice displayed exercise-timing-specific plasticity in metabolic outcomes, including phase-specificity in systemic glucose metabolism and adipose-tissue-autonomous lipolytic activity depending on time of day. Conversely, obesity impaired temporal postexercise differences in whole-body glucose oxidation, as well as the phase- and exercise-mediated induction of lipolysis in isolated adipose tissue. This obesity-induced alteration in diurnal metabolism, as well as the indistinct response to exercise, was observed concomitant with disruption of core clock gene expression in peripheral tissues. CONCLUSIONS: Overall, high-fat fed obese mice exhibit metabolic inflexibility, which is also evident in the diurnal exercise response. Our study provides physiological insight into exercise timing-dependent aspects in the dynamic regulation of metabolism and the influence of obesity on this biology.


Asunto(s)
Ritmo Circadiano , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Obesidad , Condicionamiento Físico Animal , Animales , Masculino , Obesidad/metabolismo , Ratones , Ritmo Circadiano/fisiología , Condicionamiento Físico Animal/fisiología , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Lipólisis , Tejido Adiposo/metabolismo , Metabolismo Energético/fisiología
4.
Am J Physiol Endocrinol Metab ; 326(3): E398-E406, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38324260

RESUMEN

Resveratrol, a natural polyphenol compound contained in numerous plants, has been proposed as a treatment for obesity-related disease processes such as insulin resistance. However, in humans there are conflicting results concerning the efficacy of resveratrol in improving insulin action; the purpose of the present study was to determine whether obesity status (lean, severely obese) affects the response to resveratrol in human skeletal muscle. Primary skeletal muscle cells were derived from biopsies obtained from age-matched lean and insulin-resistant women with severe obesity and incubated with resveratrol (1 µM) for 24 h. Insulin-stimulated glucose oxidation and incorporation into glycogen, insulin signal transduction, and energy-sensitive protein targets [AMP-activated protein kinase (AMPK), Sirt1, and PGC1α] were analyzed. Insulin-stimulated glycogen synthesis, glucose oxidation, and AMPK phosphorylation increased with resveratrol incubation compared with the nonresveratrol conditions (main treatment effect for resveratrol). Resveratrol further increased IRS1, Akt, and TBC1D4 insulin-stimulated phosphorylation and SIRT1 content in myotubes from lean women, but not in women with severe obesity. Resveratrol improves insulin action in primary human skeletal myotubes derived from lean women and women with severe obesity. In women with obesity, these improvements may be associated with enhanced AMPK phosphorylation with resveratrol treatment.NEW & NOTEWORTHY A physiologically relevant dose of resveratrol increases insulin-stimulated glucose oxidation and glycogen synthesis in myotubes from individuals with severe obesity. Furthermore, resveratrol improved insulin signal transduction in myotubes from lean individuals but not from individuals with obesity. Activation of AMPK plays a role in resveratrol-induced improvements in glucose metabolism in individuals with severe obesity.


Asunto(s)
Resistencia a la Insulina , Obesidad Mórbida , Humanos , Femenino , Obesidad Mórbida/metabolismo , Resveratrol/farmacología , Sirtuina 1/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Obesidad/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Insulina/farmacología , Insulina/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Glucógeno/metabolismo
5.
Science ; 382(6675): eadf3208, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38060659

RESUMEN

The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.


Asunto(s)
Envejecimiento , MAP Quinasa Quinasa Quinasa 3 , Obesidad , Especies Reactivas de Oxígeno , Ribosomas , Estrés Fisiológico , Animales , Ratones , Envejecimiento/metabolismo , MAP Quinasa Quinasa Quinasa 3/genética , MAP Quinasa Quinasa Quinasa 3/metabolismo , Obesidad/metabolismo , Biosíntesis de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Ribosomas/metabolismo , Pez Cebra , Ratones Noqueados
6.
Cell Metab ; 35(10): 1722-1735.e5, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37689069

RESUMEN

Except for latitudes close to the equator, seasonal variation in light hours can change dramatically between summer and winter. Yet investigations into the interplay between energy metabolism and circadian rhythms typically use a 12 h light:12 h dark photoperiod corresponding to the light duration at the equator. We hypothesized that altering the seasonal photoperiod affects both the rhythmicity of peripheral tissue clocks and energy homeostasis. Mice were housed at photoperiods representing either light hours in summer, winter, or the equinox. Mice housed at a winter photoperiod exhibited an increase in the amplitude of rhythmic lipid metabolism and a modest reduction in fat mass and liver triglyceride content. Comparing melatonin-proficient and -deficient mice, the effect of seasonal light on energy metabolism was largely driven by differences in the rhythmicity of food intake and not melatonin. Together, these data indicate that seasonal light impacts energy metabolism by modulating the timing of eating.

7.
Sci Adv ; 9(29): eadi4862, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478182

RESUMEN

Nicotinamide riboside is a precursor to the important cofactor nicotinamide adenine dinucleotide and has elicited metabolic benefits in multiple preclinical studies. In 2016, the first clinical trial of nicotinamide riboside was conducted to test the safety and efficacy of human supplementation. Many trials have since been conducted aiming to delineate benefits to metabolic health and severe diseases in humans. This review endeavors to summarize and critically assess the 25 currently published research articles on human nicotinamide riboside supplementation to identify any poorly founded claims and assist the field in elucidating the actual future potential for nicotinamide riboside. Collectively, oral nicotinamide riboside supplementation has displayed few clinically relevant effects, and there is an unfortunate tendency in the literature to exaggerate the importance and robustness of reported effects. Even so, nicotinamide riboside may play a role in the reduction of inflammatory states and has shown some potential in the treatment of diverse severe diseases.


Asunto(s)
NAD , Niacinamida , Humanos , Niacinamida/farmacología , Niacinamida/metabolismo , NAD/metabolismo , Compuestos de Piridinio/farmacología , Suplementos Dietéticos
8.
J Endocr Soc ; 7(6): bvad057, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37200849

RESUMEN

Context: Metabolic disorders such as obesity represent a major health challenge. Obesity alone has reached epidemic proportions, with at least 2.8 million people worldwide dying annually from diseases caused by overweight or obesity. The brain-metabolic axis is central to maintain homeostasis under metabolic stress via an intricate signaling network of hormones. Protein interacting with C kinase 1 (PICK1) is important for the biogenesis of various secretory vesicles, and we have previously shown that PICK1-deficient mice have impaired secretion of insulin and growth hormone. Objective: The aim was to investigate how global PICK1-deficient mice respond to high-fat diet (HFD) and assess its role in insulin secretion in diet-induced obesity. Methods: We characterized the metabolic phenotype through assessment of body weight, composition, glucose tolerance, islet morphology insulin secretion in vivo, and glucose-stimulated insulin secretion ex vivo. Results: PICK1-deficient mice displayed similar weight gain and body composition as wild-type (WT) mice following HFD. While HFD impaired glucose tolerance of WT mice, PICK1-deficient mice were resistant to further deterioration of their glucose tolerance compared with already glucose-impaired chow-fed PICK1-deficient mice. Surprisingly, mice with ß-cell-specific knockdown of PICK1 showed impaired glucose tolerance both on chow and HFD similar to WT mice. Conclusion: Our findings support the importance of PICK1 in overall hormone regulation. However, importantly, this effect is independent of the PICK1 expression in the ß-cell, whereby global PICK1-deficient mice resist further deterioration of their glucose tolerance following diet-induced obesity.

9.
Diabetes ; 72(7): 857-871, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074686

RESUMEN

The ability of insulin to stimulate glucose uptake in skeletal muscle is important for whole-body glycemic control. Insulin-stimulated skeletal muscle glucose uptake is improved in the period after a single bout of exercise, and accumulating evidence suggests that phosphorylation of TBC1D4 by the protein kinase AMPK is the primary mechanism responsible for this phenomenon. To investigate this, we generated a TBC1D4 knock-in mouse model with a serine-to-alanine point mutation at residue 711 that is phosphorylated in response to both insulin and AMPK activation. Female TBC1D4-S711A mice exhibited normal growth and eating behavior as well as intact whole-body glycemic control on chow and high-fat diets. Moreover, muscle contraction increased glucose uptake, glycogen utilization, and AMPK activity similarly in wild-type and TBC1D4-S711A mice. In contrast, improvements in whole-body and muscle insulin sensitivity after exercise and contractions were only evident in wild-type mice and occurred concomitantly with enhanced phosphorylation of TBC1D4-S711. These results provide genetic evidence to support that TBC1D4-S711 serves as a major point of convergence for AMPK- and insulin-induced signaling that mediates the insulin-sensitizing effect of exercise and contractions on skeletal muscle glucose uptake.


Asunto(s)
Glucosa , Insulina , Femenino , Ratones , Animales , Insulina/farmacología , Insulina/metabolismo , Glucosa/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Músculo Esquelético/metabolismo , Insulina Regular Humana/farmacología , Fosforilación , Contracción Muscular
10.
NPJ Aging ; 9(1): 7, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012386

RESUMEN

The gut microbiota impacts systemic levels of multiple metabolites including NAD+ precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC. We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC-positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.

11.
Proc Natl Acad Sci U S A ; 120(14): e2220102120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996103

RESUMEN

Molecular clocks in the periphery coordinate tissue-specific daily biorhythms by integrating input from the hypothalamic master clock and intracellular metabolic signals. One such key metabolic signal is the cellular concentration of NAD+, which oscillates along with its biosynthetic enzyme, nicotinamide phosphoribosyltransferase (NAMPT). NAD+ levels feed back into the clock to influence rhythmicity of biological functions, yet whether this metabolic fine-tuning occurs ubiquitously across cell types and is a core clock feature is unknown. Here, we show that NAMPT-dependent control over the molecular clock varies substantially between tissues. Brown adipose tissue (BAT) requires NAMPT to sustain the amplitude of the core clock, whereas rhythmicity in white adipose tissue (WAT) is only moderately dependent on NAD+ biosynthesis, and the skeletal muscle clock is completely refractory to loss of NAMPT. In BAT and WAT, NAMPT differentially orchestrates oscillation of clock-controlled gene networks and the diurnality of metabolite levels. NAMPT coordinates the rhythmicity of TCA cycle intermediates in BAT, but not in WAT, and loss of NAD+ abolishes these oscillations similarly to high-fat diet-induced circadian disruption. Moreover, adipose NAMPT depletion improved the ability of animals to defend body temperature during cold stress but in a time-of-day-independent manner. Thus, our findings reveal that peripheral molecular clocks and metabolic biorhythms are shaped in a highly tissue-specific manner by NAMPT-dependent NAD+ synthesis.


Asunto(s)
NAD , Nicotinamida Fosforribosiltransferasa , Animales , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Ritmo Circadiano/fisiología , Tejido Adiposo Pardo/metabolismo , Obesidad/metabolismo , Citocinas/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(8): e2218510120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36780527

RESUMEN

The circadian clock is a cell-autonomous transcription-translation feedback mechanism that anticipates and adapts physiology and behavior to different phases of the day. A variety of factors including hormones, temperature, food-intake, and exercise can act on tissue-specific peripheral clocks to alter the expression of genes that influence metabolism, all in a time-of-day dependent manner. The aim of this study was to elucidate the effects of exercise timing on adipose tissue metabolism. We performed RNA sequencing on inguinal adipose tissue of mice immediately following maximal exercise or sham treatment at the early rest or early active phase. Only during the early active phase did exercise elicit an immediate increase in serum nonesterified fatty acids. Furthermore, early active phase exercise increased expression of markers of thermogenesis and mitochondrial proliferation in inguinal adipose tissue. In vitro, synchronized 3T3-L1 adipocytes showed a timing-dependent difference in Adrb2 expression, as well as a greater lipolytic activity. Thus, the response of adipose tissue to exercise is time-of-day sensitive and may be partly driven by the circadian clock. To determine the influence of feeding state on the time-of-day response to exercise, we replicated the experiment in 10-h-fasted early rest phase mice to mimic the early active phase metabolic status. A 10-h fast led to a similar lipolytic response as observed after active phase exercise but did not replicate the transcriptomic response, suggesting that the observed changes in gene expression are not driven by feeding status. In conclusion, acute exercise elicits timing-specific effects on adipose tissue to maintain metabolic homeostasis.


Asunto(s)
Tejido Adiposo , Relojes Circadianos , Condicionamiento Físico Animal , Animales , Ratones , Adipocitos , Tejido Adiposo/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Termogénesis , Condicionamiento Físico Animal/fisiología , Células 3T3-L1
13.
STAR Protoc ; 4(1): 101985, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36602899

RESUMEN

The tissue-specific release and uptake of metabolites in response to exercise is incompletely understood. Here, we detail a protocol to assess arteriovenous differences across the liver and hindlimb muscles in response to treadmill exercise in mice. We describe steps for the treadmill running of mice and the region-specific sampling of blood from the liver and hindlimb. This procedure is particularly relevant for the study of tissue-specific metabolism in response to exercise. For complete details on the use and execution of this protocol, please refer to Sato et al. (2022).1.


Asunto(s)
Hígado , Músculos , Animales , Miembro Posterior/fisiología
14.
Exp Gerontol ; 173: 112109, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36708750

RESUMEN

Skeletal muscle is a tissue integral to general health. Due to its high abundance and oxidative capacity, its metabolism is intimately linked to whole-body physiology. In the elderly population, mobility correlates positively with life expectancy and survival. Furthermore, regular physical activity is one of the most effective health-promoting interventions that delay the onset of aging-associated chronic diseases. Data from preclinical studies show that aging of various tissues is accompanied by a decrease in the concentration of nicotinamide adenine dinucleotide (NAD), which plays a central role in energy homeostasis. Thus, a hypothesis has emerged that normalization of its content would ameliorate the age-related decline in tissue function and therefore improve health of the elderly. This idea, along with the documented safety and high tolerability of NAD precursor supplementation, makes NAD metabolism a prospective target for anti-aging interventions. Interestingly, muscle NAD biosynthesis pathways are stimulated by exercise training, which suggests that training-induced adaptations rely on tissue NAD levels. However, while the relationship between muscle fitness and regular physical activity is well-characterized, the proposed synergy between muscle NAD replenishment and exercise training has not been established. Here, we review the published data on the role of NAD metabolism in exercise in the context of young and aged skeletal muscle and discuss the current challenges relevant to the field.


Asunto(s)
Envejecimiento , NAD , Anciano , Humanos , Envejecimiento/fisiología , Músculo Esquelético/metabolismo , Ejercicio Físico , Oxidación-Reducción
15.
Nutrients ; 14(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36145121

RESUMEN

Diabetes incidence is rising globally at an accelerating rate causing issues at both the individual and societal levels. However, partly inspired by Ayurvedic medicine, a naturally occurring compound called pterostilbene has been demonstrated to protect against diabetes symptoms, though mainly in rats. The purpose of this study was to investigate the putative protective effect of pterostilbene on the two main aspects of diabetes, namely insulin resistance and decreased insulin secretion, in mice. To accomplish this, we employed diet-induced obese as well as streptozotocin-induced diabetic C57BL/6NTac mice for fasting glucose homeostasis assessment, tolerance tests and pancreas perfusions. In addition, we used the polygenic model of diabetes TALLYHO/JngJ to assess for prevention of ß-cell burnout. We found that the diet-induced obese C57BL/6NTac mice were insulin resistant, but that pterostilbene had no impact on this or on overall glucose regulation. We further found that the reported protective effect of pterostilbene against streptozotocin-induced diabetes was absent in C57BL/6NTac mice, despite a promising pilot experiment. Lastly, we observed that pterostilbene does not prevent or delay onset of ß-cell burnout in TALLYHO/JngJ mice. In conjunction with the literature, our findings suggest variations in the response to pterostilbene between species or between strains of species.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Glucosa , Insulina/metabolismo , Secreción de Insulina , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/tratamiento farmacológico , Ratas , Estilbenos , Estreptozocina
16.
Mol Metab ; 65: 101581, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36028120

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disease ranging from simple hepatic steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) which may progress to cirrhosis and liver cancer. NAFLD is rapidly becoming a global health challenge, and there is a need for improved diagnostic- and prognostic tools and for effective pharmacotherapies to treat NASH. The molecular mechanisms of NAFLD development and progression remain incompletely understood, though ample evidence supports a role of microRNAs (miRNAs) - small non-coding RNAs regulating gene expression - in the progression of metabolic liver disease. SCOPE OF REVIEW: In this review, we summarise the currently available liver miRNA profiling studies in people with various stages of NAFLD. We further describe the mechanistic role of three of the most extensively studied miRNA species, miR-34a, miR-122 and miR-21, and highlight selected findings on novel NAFLD-linked miRNAs. We also examine the literature on exosomal microRNAs (exomiRs) as inter-hepatocellular or -organ messengers in NAFLD. Furthermore, we address the status for utilizing circulating NAFLD-associated miRNAs as minimally invasive tools for disease diagnosis, staging and prognosis as well as their potential use as NASH pharmacotherapeutic targets. Finally, we reflect on future directions for research in the miRNA field. MAJOR CONCLUSIONS: NAFLD is associated with changes in hepatic miRNA expression patterns at early, intermediate and late stages, and specific miRNA species appear to be involved in steatosis development and NAFL progression to NASH and cirrhosis. These miRNAs act either within or between hepatocytes and other liver cell types such as hepatic stellate cells and Kupffer cells or as circulating inter-organ messengers carrying signals between the liver and extra-hepatic metabolic tissues, including the adipose tissues and the cardiovascular system. Among circulating miRNAs linked to NAFLD, miR-34a, miR-122 and miR-192 are the best candidates as biomarkers for NAFLD diagnosis and staging. To date, no miRNA-targeting pharmacotherapy has been approved for the treatment of NASH, and no such therapy is currently under clinical development. Further research should be conducted to translate the contribution of miRNAs in NAFLD into innovative therapeutic strategies.


Asunto(s)
MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Biomarcadores/metabolismo , Humanos , Cirrosis Hepática , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo
17.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35998039

RESUMEN

BACKGROUNDDuring aging, there is a functional decline in the pool of muscle stem cells (MuSCs) that influences the functional and regenerative capacity of skeletal muscle. Preclinical evidence has suggested that nicotinamide riboside (NR) and pterostilbene (PT) can improve muscle regeneration, e.g., by increasing MuSC function. The objective of this study was to investigate if supplementation with NR and PT (NRPT) promotes skeletal muscle regeneration after muscle injury in elderly individuals by improved recruitment of MuSCs.METHODSThirty-two elderly individuals (55-80 years of age) were randomized to daily supplementation with either NRPT (1,000 mg NR and 200 mg PT) or matched placebo. Two weeks after initiation of supplementation, skeletal muscle injury was induced by electrically induced eccentric muscle work. Skeletal muscle biopsies were obtained before, 2 hours after, and 2, 8, and 30 days after injury.RESULTSA substantial skeletal muscle injury was induced by the protocol and associated with release of myoglobin and creatine kinase, muscle soreness, tissue edema, and a decrease in muscle strength. MuSC content, proliferation, and cell size revealed a large demand for recruitment after injury, but this was not affected by NRPT. Furthermore, histological analyses of muscle fiber area, central nuclei, and embryonic myosin heavy chain showed no NRPT supplementation effect.CONCLUSIONDaily supplementation with 1,000 mg NR and 200 mg PT is safe but does not improve recruitment of the MuSC pool or other measures of muscle recovery in response to injury or subsequent regeneration in elderly individuals.TRIAL REGISTRATIONClinicalTrials.gov NCT03754842.FUNDINGNovo Nordisk Foundation (NNF17OC0027242) and Novo Nordisk Foundation CBMR.


Asunto(s)
Enfermedades Musculares , Cadenas Pesadas de Miosina , Anciano , Forma MM de la Creatina-Quinasa , Suplementos Dietéticos , Humanos , Músculo Esquelético , Mioglobina/farmacología , Niacinamida/análogos & derivados , Compuestos de Piridinio , Estilbenos
18.
Nutrients ; 14(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35807851

RESUMEN

Dietary restriction (DR) reduces adiposity and improves metabolism in patients with one or more symptoms of metabolic syndrome. Nonetheless, it remains elusive whether the benefits of DR in humans are mediated by calorie or nutrient restriction. This study was conducted to determine whether isocaloric dietary protein restriction is sufficient to confer the beneficial effects of dietary restriction in patients with metabolic syndrome. We performed a prospective, randomized controlled dietary intervention under constant nutritional and medical supervision. Twenty-one individuals diagnosed with metabolic syndrome were randomly assigned for caloric restriction (CR; n = 11, diet of 5941 ± 686 KJ per day) or isocaloric dietary protein restriction (PR; n = 10, diet of 8409 ± 2360 KJ per day) and followed for 27 days. Like CR, PR promoted weight loss due to a reduction in adiposity, which was associated with reductions in blood glucose, lipid levels, and blood pressure. More strikingly, both CR and PR improved insulin sensitivity by 62.3% and 93.2%, respectively, after treatment. Fecal microbiome diversity was not affected by the interventions. Adipose tissue bulk RNA-Seq data revealed minor changes elicited by the interventions. After PR, terms related to leukocyte proliferation were enriched among the upregulated genes. Protein restriction is sufficient to confer almost the same clinical outcomes as calorie restriction without the need for a reduction in calorie intake. The isocaloric characteristic of the PR intervention makes this approach a more attractive and less drastic dietary strategy in clinical settings and has more significant potential to be used as adjuvant therapy for people with metabolic syndrome.


Asunto(s)
Síndrome Metabólico , Restricción Calórica , Dieta con Restricción de Proteínas , Proteínas en la Dieta , Humanos , Obesidad , Estudios Prospectivos
19.
STAR Protoc ; 3(3): 101515, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35819886

RESUMEN

This protocol presents a variation on the 2-ΔΔCt technique for qPCR analysis. Our approach requires the inclusion of a standard curve on each qPCR plate, and like the 2-ΔΔCt technique, is dependent on the stability of housekeeping gene expression. However, unlike the 2-ΔΔCt technique, our approach corrects for imperfect cDNA amplification efficiency and allows for the use of multiple housekeeping genes. Collectively, this approach enhances analytical accuracy and thereby reduces the type I and II statistical errors in the generated data.


Asunto(s)
Genes Esenciales , ADN Complementario/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
20.
Am J Physiol Endocrinol Metab ; 322(5): E425-E435, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35344394

RESUMEN

A single bout of exercise can potentiate the effect of insulin on skeletal muscle glucose uptake via activation of the AMPK-TBC1 domain family member 4 (TBC1D4) pathway, which suggests a positive correlation between AMPK activation and insulin sensitization. In addition, prolonged fasting in rodents is known to upregulate and thereby synergistically enhance the effect of exercise on muscle AMPK activation. Therefore, fasting may potentiate the insulin-sensitizing effect of exercise. In the present study, we mimicked exercise by in situ muscle contraction and evaluated the effect of a 36-h fast on muscle contraction-induced insulin sensitization. Male Wistar rats weighing 150-170 g were allocated to either a 36-h fasting or feeding group. The extensor digitorum longus (EDL) muscles were electrically contracted via the common peroneal nerve for 10 min followed by a 3-h recovery period. EDL muscles were dissected and incubated in the presence or absence of submaximal insulin. Our results demonstrated that acute muscle contraction and 36 h of fasting additively upregulated AMPK pathway activation. Insulin-stimulated muscle glucose uptake and site-specific TBC1D4 phosphorylation were enhanced by prior muscle contraction in 36-h-fasted rats, but not in fed rats. Moreover, enhanced insulin-induced muscle glucose uptake and Akt phosphorylation due to 36 h of fasting were associated with a decrease in tribbles homolog 3 (TRB3), a negative regulator of Akt activation. In conclusion, fasting and prior muscle contraction synergistically enhance insulin-stimulated TBC1D4 phosphorylation and glucose uptake, which is associated with augmented AMPK pathway activation in rodents.NEW & NOTEWORTHY In this study, we revealed that 36 h of fasting additively upregulated acute muscle contraction-induced AMPK pathway activation in rats. Besides, fasting and muscle contraction synergistically enhanced insulin-stimulated site-specific TBC1D4 phosphorylation and glucose uptake, which was associated with augmented AMPK pathway activation. These results contribute to understanding the regulation of muscle insulin sensitivity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Insulina , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Ayuno , Proteínas Activadoras de GTPasa/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Insulina/farmacología , Masculino , Contracción Muscular , Músculo Esquelético/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...