Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38410448

RESUMEN

Infection with Sudan virus (SUDV) is characterized by an aggressive disease course with case fatality rates between 40-100% and no approved vaccines or therapeutics. SUDV causes sporadic outbreaks in sub-Saharan Africa, including a recent outbreak in Uganda which has resulted in over 100 confirmed cases in one month. Prior vaccine and therapeutic efforts have historically prioritized Ebola virus (EBOV), leading to a significant gap in available treatments. Two vaccines, Erbevo ® and Zabdeno ® /Mvabea ® , are licensed for use against EBOV but are ineffective against SUDV. Recombinant adenovirus vector vaccines have been shown to be safe and effective against filoviruses, but efficacy depends on having low seroprevalence to the vector in the target human population. For this reason, and because of an excellent safety and immunogenicity profile, ChAd3 was selected as a superior vaccine vector. Here, a ChAd3 vaccine expressing the SUDV glycoprotein (GP) was evaluated for immunogenicity and efficacy in nonhuman primates. We demonstrate that a single dose of ChAd3-SUDV confers acute and durable protection against lethal SUDV challenge with a strong correlation between the SUDV GP-specific antibody titers and survival outcome. Additionally, we show that a bivalent ChAd3 vaccine encoding the GP from both EBOV and SUDV protects against both parenteral and aerosol lethal SUDV challenge. Our data indicate that the ChAd3-SUDV vaccine is a suitable candidate for a prophylactic vaccination strategy in regions at high risk of filovirus outbreaks. One Sentence Summary: A single-dose of ChAd3 vaccine protected macaques from lethal challenge with Sudan virus (SUDV) by parenteral and aerosol routes of exposure.

2.
PLoS Negl Trop Dis ; 16(5): e0010081, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35533188

RESUMEN

Eastern equine encephalitis virus (EEEV) is mosquito-borne virus that produces fatal encephalitis in humans. We recently conducted a first of its kind study to investigate EEEV clinical disease course following aerosol challenge in a cynomolgus macaque model utilizing the state-of-the-art telemetry to measure critical physiological parameters. Here, we report the results of a comprehensive pathology study of NHP tissues collected at euthanasia to gain insights into EEEV pathogenesis. Viral RNA and proteins as well as microscopic lesions were absent in the visceral organs. In contrast, viral RNA and proteins were readily detected throughout the brain including autonomic nervous system (ANS) control centers and spinal cord. However, despite presence of viral RNA and proteins, majority of the brain and spinal cord tissues exhibited minimal or no microscopic lesions. The virus tropism was restricted primarily to neurons, and virus particles (~61-68 nm) were present within axons of neurons and throughout the extracellular spaces. However, active virus replication was absent or minimal in majority of the brain and was limited to regions proximal to the olfactory tract. These data suggest that EEEV initially replicates in/near the olfactory bulb following aerosol challenge and is rapidly transported to distal regions of the brain by exploiting the neuronal axonal transport system to facilitate neuron-to-neuron spread. Once within the brain, the virus gains access to the ANS control centers likely leading to disruption and/or dysregulation of critical physiological parameters to produce severe disease. Moreover, the absence of microscopic lesions strongly suggests that the underlying mechanism of EEEV pathogenesis is due to neuronal dysfunction rather than neuronal death. This study is the first comprehensive investigation into EEEV pathology in a NHP model and will provide significant insights into the evaluation of countermeasure.


Asunto(s)
Virus de la Encefalitis Equina del Este , Encefalomielitis Equina , Aerosoles , Animales , Encéfalo , Modelos Animales de Enfermedad , Encefalomielitis Equina/patología , Caballos , Macaca fascicularis , ARN Viral , Médula Espinal/patología
3.
Sci Transl Med ; 14(631): eabi5229, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35138912

RESUMEN

Effective therapeutics have been developed against acute Ebola virus disease (EVD) in both humans and experimentally infected nonhuman primates. However, the risk of viral persistence and associated disease recrudescence in survivors receiving these therapeutics remains unclear. In contrast to rhesus macaques that survived Ebola virus (EBOV) exposure in the absence of treatment, we discovered that EBOV, despite being cleared from all other organs, persisted in the brain ventricular system of rhesus macaque survivors that had received monoclonal antibody (mAb) treatment. In mAb-treated macaque survivors, EBOV persisted in macrophages infiltrating the brain ventricular system, including the choroid plexuses. This macrophage infiltration was accompanied by severe tissue damage, including ventriculitis, choroid plexitis, and meningoencephalitis. Specifically, choroid plexus endothelium-derived EBOV infection led to viral persistence in the macaque brain ventricular system. This resulted in apoptosis of ependymal cells, which constitute the blood-cerebrospinal fluid barrier of the choroid plexuses. Fatal brain-confined recrudescence of EBOV infection manifested as severe inflammation, local pathology, and widespread infection of the ventricular system and adjacent neuropil in some of the mAb-treated macaque survivors. This study highlights organ-specific EBOV persistence and fatal recrudescent disease in rhesus macaque survivors after therapeutic treatment and has implications for the long-term follow-up of human survivors of EVD.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Anticuerpos Monoclonales , Encéfalo , Humanos , Macaca mulatta , Recurrencia , Sobrevivientes
4.
Viruses ; 13(11)2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34835103

RESUMEN

Ebola virus disease (EVD) is a serious global health concern because case fatality rates are approximately 50% due to recent widespread outbreaks in Africa. Well-defined nonhuman primate (NHP) models for different routes of Ebola virus exposure are needed to test the efficacy of candidate countermeasures. In this natural history study, four rhesus macaques were challenged via aerosol with a target titer of 1000 plaque-forming units per milliliter of Ebola virus. The course of disease was split into the following stages for descriptive purposes: subclinical, clinical, and decompensated. During the subclinical stage, high levels of venous partial pressure of carbon dioxide led to respiratory acidemia in three of four of the NHPs, and all developed lymphopenia. During the clinical stage, all animals had fever, viremia, and respiratory alkalosis. The decompensatory stage involved coagulopathy, cytokine storm, and liver and renal injury. These events were followed by hypotension, elevated lactate, metabolic acidemia, shock and mortality similar to historic intramuscular challenge studies. Viral loads in the lungs of aerosol-exposed animals were not distinctly different compared to previous intramuscularly challenged studies. Differences in the aerosol model, compared to intramuscular model, include an extended subclinical stage, shortened clinical stage, and general decompensated stage. Therefore, the shortened timeframe for clinical detection of the aerosol-induced disease can impair timely therapeutic administration. In summary, this nonhuman primate model of aerosol-induced EVD characterizes early disease markers and additional details to enable countermeasure development.


Asunto(s)
Modelos Animales de Enfermedad , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/etiología , Aerosoles , Animales , Femenino , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Macaca mulatta , Masculino , ARN Viral/sangre , Carga Viral
5.
Front Physiol ; 12: 691074, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552498

RESUMEN

Background and Objectives: Early warning of bacterial and viral infection, prior to the development of overt clinical symptoms, allows not only for improved patient care and outcomes but also enables faster implementation of public health measures (patient isolation and contact tracing). Our primary objectives in this effort are 3-fold. First, we seek to determine the upper limits of early warning detection through physiological measurements. Second, we investigate whether the detected physiological response is specific to the pathogen. Third, we explore the feasibility of extending early warning detection with wearable devices. Research Methods: For the first objective, we developed a supervised random forest algorithm to detect pathogen exposure in the asymptomatic period prior to overt symptoms (fever). We used high-resolution physiological telemetry data (aortic blood pressure, intrathoracic pressure, electrocardiograms, and core temperature) from non-human primate animal models exposed to two viral pathogens: Ebola and Marburg (N = 20). Second, to determine reusability across different pathogens, we evaluated our algorithm against three independent physiological datasets from non-human primate models (N = 13) exposed to three different pathogens: Lassa and Nipah viruses and Y. pestis. For the third objective, we evaluated performance degradation when the algorithm was restricted to features derived from electrocardiogram (ECG) waveforms to emulate data from a non-invasive wearable device. Results: First, our cross-validated random forest classifier provides a mean early warning of 51 ± 12 h, with an area under the receiver-operating characteristic curve (AUC) of 0.93 ± 0.01. Second, our algorithm achieved comparable performance when applied to datasets from different pathogen exposures - a mean early warning of 51 ± 14 h and AUC of 0.95 ± 0.01. Last, with a degraded feature set derived solely from ECG, we observed minimal degradation - a mean early warning of 46 ± 14 h and AUC of 0.91 ± 0.001. Conclusion: Under controlled experimental conditions, physiological measurements can provide over 2 days of early warning with high AUC. Deviations in physiological signals following exposure to a pathogen are due to the underlying host's immunological response and are not specific to the pathogen. Pre-symptomatic detection is strong even when features are limited to ECG-derivatives, suggesting that this approach may translate to non-invasive wearable devices.

6.
PLoS One ; 16(7): e0252874, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34214118

RESUMEN

Filoviruses (Family Filoviridae genera Ebolavirus and Marburgvirus) are negative-stranded RNA viruses that cause severe health effects in humans and non-human primates, including death. Except in outbreak settings, vaccines and other medical countermeasures against Ebola virus (EBOV) will require testing under the FDA Animal Rule. Multiple vaccine candidates have been evaluated using cynomolgus monkeys (CM) exposed to EBOV Kikwit strain. To the best of our knowledge, however, animal model development data supporting the use of CM in vaccine research have not been submitted to the FDA. This study describes a large CM database (122 CM, 62 female and 60 male, age 2 to 9 years) and demonstrates the consistency of the CM model through time to death models and descriptive statistics. CMs were exposed to EBOV doses of 0.1 to 100,000 PFU in 33 studies conducted at three Animal Biosafety Level 4 facilities, by three exposure routes. Time to death was modeled using Cox proportional hazards models with a frailty term that incorporated study-to-study variability. Despite significant differences attributed to exposure variables, all CMs exposed to the 100 to 1,000 pfu doses commonly used in vaccine studies died or met euthanasia criteria within 21 days of exposure, median 7 days, 93% between 5 and 12 days of exposure. Moderate clinical signs were observed 4 to 5 days after exposure and preceded death or euthanasia by approximately one day. Viremia was detected within a few days of infection. Hematology indices were indicative of viremia and the propensity for hemorrhage with progression of Ebola viremia. Changes associated with coagulation parameters and platelets were consistent with coagulation disruption. Changes in leukocyte profiles were indicative of an acute inflammatory response. Increased liver enzymes were observed shortly after exposure. Taken together, these factors suggest that the cynomolgus monkey is a reliable animal model for human disease.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola , Animales , Modelos Animales de Enfermedad , Brotes de Enfermedades , Femenino , Macaca fascicularis , Masculino , Reproducibilidad de los Resultados , Carga Viral
7.
PLoS Negl Trop Dis ; 15(6): e0009424, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34138849

RESUMEN

Most alphaviruses are mosquito-borne and can cause severe disease in humans and domesticated animals. In North America, eastern equine encephalitis virus (EEEV) is an important human pathogen with case fatality rates of 30-90%. Currently, there are no therapeutics or vaccines to treat and/or prevent human infection. One critical impediment in countermeasure development is the lack of insight into clinically relevant parameters in a susceptible animal model. This study examined the disease course of EEEV in a cynomolgus macaque model utilizing advanced telemetry technology to continuously and simultaneously measure temperature, respiration, activity, heart rate, blood pressure, electrocardiogram (ECG), and electroencephalography (EEG) following an aerosol challenge at 7.0 log10 PFU. Following challenge, all parameters were rapidly and substantially altered with peak alterations from baseline ranged as follows: temperature (+3.0-4.2°C), respiration rate (+56-128%), activity (-15-76% daytime and +5-22% nighttime), heart rate (+67-190%), systolic (+44-67%) and diastolic blood pressure (+45-80%). Cardiac abnormalities comprised of alterations in QRS and PR duration, QTc Bazett, T wave morphology, amplitude of the QRS complex, and sinoatrial arrest. An unexpected finding of the study was the first documented evidence of a critical cardiac event as an immediate cause of euthanasia in one NHP. All brain waves were rapidly (~12-24 hpi) and profoundly altered with increases of up to 6,800% and severe diffuse slowing of all waves with decreases of ~99%. Lastly, all NHPs exhibited disruption of the circadian rhythm, sleep, and food/fluid intake. Accordingly, all NHPs met the euthanasia criteria by ~106-140 hpi. This is the first of its kind study utilizing state of the art telemetry to investigate multiple clinical parameters relevant to human EEEV infection in a susceptible cynomolgus macaque model. The study provides critical insights into EEEV pathogenesis and the parameters identified will improve animal model development to facilitate rapid evaluation of vaccines and therapeutics.


Asunto(s)
Infecciones por Alphavirus/virología , Modelos Animales de Enfermedad , Electroencefalografía , Virus de la Encefalitis Equina del Este , Monitoreo Fisiológico/instrumentación , Telemetría/instrumentación , Aerosoles , Infecciones por Alphavirus/patología , Animales , Presión Sanguínea , Temperatura Corporal , Chlorocebus aethiops , Femenino , Frecuencia Cardíaca , Humanos , Macaca fascicularis , Masculino , Monitoreo Fisiológico/métodos , Actividad Motora , Fenómenos Fisiológicos Respiratorios , Telemetría/métodos , Células Vero
8.
PLoS One ; 15(10): e0236305, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33105476

RESUMEN

The Indian River Lagoon, located on the east coast of Florida, USA, is an Estuary of National Significance and an important economic and ecological resource. The Indian River Lagoon faces several environmental pressures, including freshwater discharges through the St. Lucie Estuary; accumulation of anoxic, fine-grained, organic-rich sediment; and metal contamination from agriculture and marinas. Although the Indian River Lagoon has been well-studied, little is known about its microbial communities; thus, a two-year 16S amplicon sequencing study was conducted to assess the spatiotemporal changes of the sediment bacterial and archaeal groups. In general, the Indian River Lagoon exhibited a prokaryotic community that was consistent with other estuarine studies. Statistically different communities were found between the Indian River Lagoon and St. Lucie Estuary due to changes in porewater salinity causing microbes that require salts for growth to be higher in the Indian River Lagoon. The St. Lucie Estuary exhibited more obvious prokaryotic seasonality, such as a higher relative abundance of Betaproteobacteriales in wet season and a higher relative abundance of Flavobacteriales in dry season samples. Distance-based linear models revealed these communities were more affected by changes in total organic matter and copper than changes in temperature. Anaerobic prokaryotes, such as Campylobacterales, were more associated with high total organic matter and copper samples while aerobic prokaryotes, such as Nitrosopumilales, were more associated with low total organic matter and copper samples. This initial study fills the knowledge gap on the Indian River Lagoon bacterial and archaeal communities and serves as important data for future studies to compare to determine possible future changes due to human impacts or environmental changes.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Biodiversidad , Sedimentos Geológicos/microbiología , Células Procariotas/clasificación , Ríos/microbiología , Contaminantes Químicos del Agua/análisis , Archaea/aislamiento & purificación , Bacterias/aislamiento & purificación , Estuarios , Florida , Sedimentos Geológicos/análisis
9.
Viruses ; 12(6)2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485952

RESUMEN

Lassa virus (LASV), an arenavirus causing Lassa fever, is endemic to West Africa with up to 300,000 cases and between 5000 and 10,000 deaths per year. Rarely seen in the United States, Lassa virus is a CDC category A biological agent inasmuch deliberate aerosol exposure can have high mortality rates compared to naturally acquired infection. With the need for an animal model, specific countermeasures remain elusive as there is no FDA-approved vaccine. This natural history of aerosolized Lassa virus exposure in Macaca fascicularis was studied under continuous telemetric surveillance. The macaque response to challenge was largely analogous to severe human disease with fever, tachycardia, hypotension, and tachypnea. During initial observations, an increase trend of activated monocytes positive for viral glycoprotein was accompanied by lymphocytopenia. Disease uniformly progressed to high viremia followed by low anion gap, alkalosis, anemia, and thrombocytopenia. Hypoproteinemia occurred late in infection followed by increased levels of white blood cells, cytokines, chemokines, and biochemical markers of liver injury. Viral nucleic acids were detected in tissues of three non­survivors at endpoint, but not in the lone survivor. This study provides useful details to benchmark a pivotal model of Lassa fever in support of medical countermeasure development for both endemic disease and traditional biodefense purposes.


Asunto(s)
Aerosoles/efectos adversos , Fiebre de Lassa/etiología , Animales , Citometría de Flujo , Exposición por Inhalación , Fiebre de Lassa/diagnóstico , Fiebre de Lassa/virología , Virus Lassa/patogenicidad , Macaca fascicularis , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Telemetría , Ensayo de Placa Viral , Viremia/diagnóstico
10.
Integr Environ Assess Manag ; 15(2): 209-223, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29920933

RESUMEN

Impacts from oil exploration, development, and production in the Beaufort Sea, Alaska, USA are assessed using concentrations of metals in sediments collected during 2014 to 2015, combined with a large data set for 1985 to 2006. Concentrations of 7 (1980s) or 17 (1999-2015) metals in 423 surface sediments from 134 stations, plus 563 samples from 30 cores were highly variable, primarily as a function of sediment granulometry with naturally greater metals concentrations in fine-grained, Al-rich sediment. Metals versus Al correlation plots were used to normalize metals concentrations and identify values significantly above background. Barium, Cr, Cu, Hg, and Pb concentrations were above background, but variable, within 250 m of some offshore sites where drilling occurred between 1981 and 2001; these areas totaled <6 km2 of 11 000 km2 in the total lease area. Random and fixed sampling along the coastal Beaufort Sea from 1985 to 2015 yielded 40 positive anomalies for metals in surface sediments (∼0.8% of 5082 data points). About 85% of the anomalies were from developed areas. Half the anomalies were for the 5 metals found enhanced near drilling sites. No metals concentrations, except As, exceeded accepted sediment quality criteria. Interannual shifts in metals values for surface sediments at inner shelf sites were common and linked to storm-induced transitions in granulometry; however, metal-to-Al ratios were uniform during these shifts. Sediment cores generally recorded centuries of background values, except for As, Fe, and Mn. These 3 metals were naturally enriched in sediments from deeper water (>100 m) via diagenetic remobilization at sediment depths of 5 to 15 cm, upward diffusion, and precipitation in surface oxic layers. Minimal evidence for anthropogenic inputs of metals, except near some exploratory drilling sites, is consistent with extraction of most oil from land or barrier islands in the Alaskan Arctic and restricted offshore activity to date. Integr Environ Assess Manag 2019;15:209-223. © 2018 SETAC.


Asunto(s)
Metales/análisis , Industria del Petróleo y Gas , Contaminantes Químicos del Agua/análisis , Alaska , Monitoreo del Ambiente/estadística & datos numéricos , Sedimentos Geológicos/análisis , Océanos y Mares
11.
Viruses ; 10(10)2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241284

RESUMEN

In the 2014⁻2016 West Africa Ebola Virus (EBOV) outbreak, there was a significant concern raised about the potential for secondary bacterial infection originating from the gastrointestinal tract, which led to the empiric treatment of many patients with antibiotics. This retrospective pathology case series summarizes the gastrointestinal pathology observed in control animals in the rhesus EBOV-Kikwit intramuscular 1000 plaque forming unit infection model. All 31 Non-human primates (NHPs) exhibited lymphoid depletion of gut-associated lymphoid tissue (GALT) but the severity and the specific location of the depletion varied. Mesenteric lymphoid depletion and necrosis were present in 87% (27/31) of NHPs. There was mucosal barrier disruption of the intestinal tract with mucosal necrosis and/or ulceration most notably in the duodenum (16%), cecum (16%), and colon (29%). In the intestinal tract, hemorrhage was noted most frequently in the duodenum (52%) and colon (45%). There were focal areas of bacterial submucosal invasion in the gastrointestinal (GI) tract in 9/31 (29%) of NHPs. Only 2/31 (6%) had evidence of pancreatic necrosis. One NHP (3%) experienced jejunal intussusception which may have been directly related to EBOV. Immunofluorescence assays demonstrated EBOV antigen in CD68+ macrophage/monocytes and endothelial cells in areas of GI vascular injury or necrosis.


Asunto(s)
Ebolavirus/inmunología , Tracto Gastrointestinal/patología , Fiebre Hemorrágica Ebola/patología , Animales , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/inmunología , Antígenos Virales/inmunología , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Hemorragia Gastrointestinal/patología , Hemorragia Gastrointestinal/virología , Tracto Gastrointestinal/virología , Humanos , Tejido Linfoide/patología , Tejido Linfoide/virología , Macaca mulatta , Masculino , Necrosis/patología , Necrosis/virología , Estudios Retrospectivos
12.
Cell Rep ; 24(4): 1050-1059.e5, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-30044972

RESUMEN

Development of an effective vaccine became a worldwide priority after the devastating 2013-2016 Ebola disease outbreak. To qualitatively profile the humoral response against advanced filovirus vaccine candidates, we developed Domain Programmable Arrays (DPA), a systems serology platform to identify epitopes targeted after vaccination or filovirus infection. We optimized the assay using a panel of well-characterized monoclonal antibodies. After optimization, we utilized the system to longitudinally characterize the immunoglobulin (Ig) isotype-specific responses in non-human primates vaccinated with rVSV-ΔG-EBOV-glycoprotein (GP). Strikingly, we observed that, although the IgM response was directed against epitopes over the whole GP, the IgG and IgA responses were almost exclusively directed against the mucin-like domain (MLD) of the glycan cap. Further research will be needed to characterize this possible biased IgG and IgA response toward the MLD, but the results corroborate that DPA is a valuable tool to qualitatively measure the humoral response after vaccination.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Inmunidad Humoral/genética , Animales , Vacunas contra el Virus del Ébola/sangre , Humanos , Macaca fascicularis , Ratones
13.
J Infect Dis ; 218(suppl_5): S612-S626, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29860496

RESUMEN

Background: For most classes of drugs, rapid development of therapeutics to treat emerging infections is challenged by the timelines needed to identify compounds with the desired efficacy, safety, and pharmacokinetic profiles. Fully human monoclonal antibodies (mAbs) provide an attractive method to overcome many of these hurdles to rapidly produce therapeutics for emerging diseases. Methods: In this study, we deployed a platform to generate, test, and develop fully human antibodies to Zaire ebolavirus. We obtained specific anti-Ebola virus (EBOV) antibodies by immunizing VelocImmune mice that use human immunoglobulin variable regions in their humoral responses. Results: Of the antibody clones isolated, 3 were selected as best at neutralizing EBOV and triggering FcγRIIIa. Binding studies and negative-stain electron microscopy revealed that the 3 selected antibodies bind to non-overlapping epitopes, including a potentially new protective epitope not targeted by other antibody-based treatments. When combined, a single dose of a cocktail of the 3 antibodies protected nonhuman primates (NHPs) from EBOV disease even after disease symptoms were apparent. Conclusions: This antibody cocktail provides complementary mechanisms of actions, incorporates novel specificities, and demonstrates high-level postexposure protection from lethal EBOV disease in NHPs. It is now undergoing testing in normal healthy volunteers in preparation for potential use in future Ebola epidemics.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Glicoproteínas/inmunología , Cobayas , Células HEK293 , Humanos , Macaca mulatta , Masculino , Ratones
14.
Environ Sci Pollut Res Int ; 24(36): 27897-27904, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28988299

RESUMEN

More widespread use of metallothionein (MT) as a biomarker for trace metal pollution continues to be partly dependent on obtaining reliable baseline concentrations and identifying increased induction of the enzyme with only modest increases in metal concentrations. In this study, new data on metals and MT levels in whole clams tissue, gills, and digestive glands from field samples and in sediments are presented. Concentrations of Cd, Cu, Fe, and Zn in depurated (24 h) clam samples of digestive glands, gills, and the whole clam Merceneria merceneria from the Indian River Lagoon, Florida, varied with location and showed moderate to strong correlations among Zn, Cu, and Fe. Concentrations of metallothionein (dry wt.) ranged from 34─270 µg/g in gills and 150-440 µg/g in digestive glands and showed moderate to strong correlations between organs and with metal concentrations in those organs. Observed trends support increased synthesis of metallothionein with only moderate increases in metal values and in response to statistically higher sediment metal concentrations.


Asunto(s)
Biomarcadores/metabolismo , Exposición a Riesgos Ambientales , Mercenaria/metabolismo , Metalotioneína/metabolismo , Metales Pesados/metabolismo , Oligoelementos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Sistema Digestivo/metabolismo , Glándulas Exocrinas/química , Florida , Branquias/química
15.
Parasit Vectors ; 10(1): 218, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28468673

RESUMEN

BACKGROUND: Ebola virus (EBOV) infection results in high morbidity and mortality and is primarily transmitted in communities by contact with infectious bodily fluids. While clinical and experimental evidence indicates that EBOV is transmitted via mucosal exposure, the ability of non-biting muscid flies to mechanically transmit EBOV following exposure to the face had not been assessed. RESULTS: To investigate this transmission route, house flies (Musca domestica Linnaeus) were used to deliver an EBOV/blood mixture to the ocular/nasal/oral facial mucosa of four cynomolgus macaques (Macaca fascicularis Raffles). Following exposure, macaques were monitored for evidence of infection through the conclusion of the study, days 57 and 58. We found no evidence of systemic infection in any of the exposed macaques. CONCLUSIONS: The results of this study indicate that there is a low potential for the mechanical transmission of EBOV via house flies - the conditions in this study were not sufficient to initiate infection.


Asunto(s)
Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/transmisión , Moscas Domésticas/virología , Insectos Vectores/virología , Animales , Ojo/virología , Cara/virología , Heces/virología , Fiebre Hemorrágica Ebola/sangre , Fiebre Hemorrágica Ebola/virología , Macaca fascicularis , Mucosa Bucal/virología , Membrana Mucosa/virología , Nariz/virología
16.
Science ; 351(6279): 1339-42, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26917593

RESUMEN

Ebola virus disease in humans is highly lethal, with case fatality rates ranging from 25 to 90%. There is no licensed treatment or vaccine against the virus, underscoring the need for efficacious countermeasures. We ascertained that a human survivor of the 1995 Kikwit Ebola virus disease outbreak maintained circulating antibodies against the Ebola virus surface glycoprotein for more than a decade after infection. From this survivor we isolated monoclonal antibodies (mAbs) that neutralize recent and previous outbreak variants of Ebola virus and mediate antibody-dependent cell-mediated cytotoxicity in vitro. Strikingly, monotherapy with mAb114 protected macaques when given as late as 5 days after challenge. Treatment with a single human mAb suggests that a simplified therapeutic strategy for human Ebola infection may be possible.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Adulto , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Ensayos Clínicos como Asunto , Brotes de Enfermedades , Femenino , Fiebre Hemorrágica Ebola/epidemiología , Humanos , Macaca , Masculino , Datos de Secuencia Molecular , Sobrevivientes
17.
Viruses ; 7(12): 6739-54, 2015 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-26703716

RESUMEN

Recent experimentation with the variants of the Ebola virus that differ in the glycoprotein's poly-uridine site, which dictates the form of glycoprotein produced through a transcriptional stutter, has resulted in questions regarding the pathogenicity and lethality of the stocks used to develop products currently undergoing human clinical trials to combat the disease. In order to address these concerns and prevent the delay of these critical research programs, we designed an experiment that permitted us to intramuscularly challenge statistically significant numbers of naïve and vaccinated cynomolgus macaques with either a 7U or 8U variant of the Ebola virus, Kikwit isolate. In naïve animals, no difference in survivorship was observed; however, there was a significant delay in the disease course between the two groups. Significant differences were also observed in time-of-fever, serum chemistry, and hematology. In vaccinated animals, there was no statistical difference in survivorship between either challenge groups, with two succumbing in the 7U group compared to 1 in the 8U challenge group. In summary, survivorship was not affected, but the Ebola virus disease course in nonhuman primates is temporally influenced by glycoprotein poly-U editing site populations.


Asunto(s)
Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Poli U/análisis , Proteínas del Envoltorio Viral/química , Factores de Virulencia/química , Animales , Modelos Animales de Enfermedad , Inyecciones Intramusculares , Macaca fascicularis , Análisis de Supervivencia , Proteínas del Envoltorio Viral/metabolismo , Factores de Virulencia/metabolismo
18.
Viruses ; 6(11): 4666-82, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25421892

RESUMEN

Multiple products are being developed for use against filoviral infections. Efficacy for these products will likely be demonstrated in nonhuman primate models of filoviral disease to satisfy licensure requirements under the Animal Rule, or to supplement human data. Typically, the endpoint for efficacy assessment will be survival following challenge; however, there exists no standardized approach for assessing the health or euthanasia criteria for filovirus-exposed nonhuman primates. Consideration of objective criteria is important to (a) ensure test subjects are euthanized without unnecessary distress; (b) enhance the likelihood that animals exhibiting mild or moderate signs of disease are not prematurely euthanized; (c) minimize the occurrence of spontaneous deaths and loss of end-stage samples; (d) enhance the reproducibility of experiments between different researchers; and (e) provide a defensible rationale for euthanasia decisions that withstands regulatory scrutiny. Historic records were compiled for 58 surviving and non-surviving monkeys exposed to Ebola virus at the US Army Medical Research Institute of Infectious Diseases. Clinical pathology parameters were statistically analyzed and those exhibiting predicative value for survival are reported. These findings may be useful for standardization of objective euthanasia assessments in rhesus monkeys exposed to Ebola virus and may serve as a useful approach for other standardization efforts.


Asunto(s)
Eutanasia Animal , Haplorrinos , Fiebre Hemorrágica Ebola/patología , Enfermedades de los Primates/patología , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Fiebre Hemorrágica Ebola/terapia , Enfermedades de los Primates/terapia , Análisis de Supervivencia
19.
Nat Med ; 20(10): 1126-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25194571

RESUMEN

Ebolavirus disease causes high mortality, and the current outbreak has spread unabated through West Africa. Human adenovirus type 5 vectors (rAd5) encoding ebolavirus glycoprotein (GP) generate protective immunity against acute lethal Zaire ebolavirus (EBOV) challenge in macaques, but fail to protect animals immune to Ad5, suggesting natural Ad5 exposure may limit vaccine efficacy in humans. Here we show that a chimpanzee-derived replication-defective adenovirus (ChAd) vaccine also rapidly induced uniform protection against acute lethal EBOV challenge in macaques. Because protection waned over several months, we boosted ChAd3 with modified vaccinia Ankara (MVA) and generated, for the first time, durable protection against lethal EBOV challenge.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Vacunas contra el Adenovirus/administración & dosificación , Vacunas contra el Adenovirus/genética , Vacunas contra el Adenovirus/inmunología , Adenovirus Humanos/genética , Adenovirus Humanos/inmunología , Adenovirus de los Simios/genética , Adenovirus de los Simios/inmunología , Animales , Virus Defectuosos/genética , Virus Defectuosos/inmunología , Vacunas contra el Virus del Ébola/administración & dosificación , Vacunas contra el Virus del Ébola/genética , Ebolavirus/genética , Femenino , Vectores Genéticos , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunización Secundaria , Macaca fascicularis , Pan troglodytes , ARN Viral/sangre , ARN Viral/genética , Factores de Tiempo , Virus Vaccinia/genética , Virus Vaccinia/inmunología
20.
J Biomed Nanotechnol ; 9(9): 1624-35, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23980510

RESUMEN

Silver nanoparticles have been shown to inhibit viruses. However, very little is known about the mechanism of antiviral activity. This study tested the hypothesis that 25-nm silver nanoparticles inhibited Vaccinia virus replication by preventing viral entry. Plaque reduction, confocal microscopy, and beta-galactosidase reporter gene assays were used to examine viral attachment and entry in the presence and absence of silver nanoparticles. To explore the mechanism of inhibition, viral entry experiments were conducted with silver nanoparticles and small interfering RNAs designed to silence the gene coding for p21-activated kinase 1, a key mediator of macropinocytosis. The silver nanoparticles caused a 4- to 5-log reduction in viral titer at concentrations that were not toxic to cells. Virus was capable of adsorbing to cells but could not enter cells in the presence of silver nanoparticles. Virus particles that had adsorbed to cells in the presence of silver nanoparticles were found to be infectious upon removal from the cells, indicating lack of direct virucidal effect. The half maximal inhibitory concentration for viral entry in the presence of silver nanoparticles was 27.4+/-3.3 microg/ml. When macropinocytosis was blocked, this inhibition was significantly reduced. Thus, macropinocytosis was required for the full antiviral effect. For the first time, this study points to the novel result that a cellular process involved in viral entry is responsible for the antiviral effects of silver nanoparticles.


Asunto(s)
Riñón/fisiología , Riñón/virología , Nanopartículas del Metal/administración & dosificación , Pinocitosis/fisiología , Plata/administración & dosificación , Virus Vaccinia/fisiología , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/administración & dosificación , Antivirales/química , Línea Celular , Haplorrinos , Células HeLa , Humanos , Ensayo de Materiales , Nanopartículas del Metal/química , Pinocitosis/efectos de los fármacos , Plata/química , Vaccinia/tratamiento farmacológico , Vaccinia/virología , Virus Vaccinia/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...