Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 613(7943): 308-316, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36544022

RESUMEN

The testis produces gametes through spermatogenesis and evolves rapidly at both the morphological and molecular level in mammals1-6, probably owing to the evolutionary pressure on males to be reproductively successful7. However, the molecular evolution of individual spermatogenic cell types across mammals remains largely uncharacterized. Here we report evolutionary analyses of single-nucleus transcriptome data for testes from 11 species that cover the three main mammalian lineages (eutherians, marsupials and monotremes) and birds (the evolutionary outgroup), and include seven primates. We find that the rapid evolution of the testis was driven by accelerated fixation rates of gene expression changes, amino acid substitutions and new genes in late spermatogenic stages, probably facilitated by reduced pleiotropic constraints, haploid selection and transcriptionally permissive chromatin. We identify temporal expression changes of individual genes across species and conserved expression programs controlling ancestral spermatogenic processes. Genes predominantly expressed in spermatogonia (germ cells fuelling spermatogenesis) and Sertoli (somatic support) cells accumulated on X chromosomes during evolution, presumably owing to male-beneficial selective forces. Further work identified transcriptomal differences between X- and Y-bearing spermatids and uncovered that meiotic sex-chromosome inactivation (MSCI) also occurs in monotremes and hence is common to mammalian sex-chromosome systems. Thus, the mechanism of meiotic silencing of unsynapsed chromatin, which underlies MSCI, is an ancestral mammalian feature. Our study illuminates the molecular evolution of spermatogenesis and associated selective forces, and provides a resource for investigating the biology of the testis across mammals.


Asunto(s)
Evolución Molecular , Mamíferos , Espermatogénesis , Testículo , Animales , Masculino , Cromatina/genética , Mamíferos/genética , Meiosis/genética , Espermatogénesis/genética , Testículo/citología , Transcriptoma , Análisis de la Célula Individual , Aves/genética , Primates/genética , Regulación de la Expresión Génica , Espermatogonias/citología , Células de Sertoli/citología , Cromosoma X/genética , Cromosoma Y/genética , Compensación de Dosificación (Genética) , Silenciador del Gen
2.
Cancer Res ; 82(17): 3116-3129, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35819252

RESUMEN

SIGNIFICANCE: Single-cell analysis of healthy lung tissue and lung cancer reveals distinct tumor cell populations, including cells with differential immune modulating capacity between smokers and never smokers, which could guide future therapeutic strategies.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Adenocarcinoma/patología , Femenino , Humanos , Neoplasias Pulmonares/patología , Fumadores , Fumar/efectos adversos
3.
Gastroenterology ; 160(4): 1330-1344.e11, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33212097

RESUMEN

BACKGROUND & AIMS: Molecular evidence of cellular heterogeneity in the human exocrine pancreas has not been yet established because of the local concentration and cascade of hydrolytic enzymes that can rapidly degrade cells and RNA upon pancreatic resection. We sought to better understand the heterogeneity and cellular composition of the pancreas in neonates and adults in healthy and diseased conditions using single-cell sequencing approaches. METHODS: We innovated single-nucleus RNA-sequencing protocols and profiled more than 120,000 cells from pancreata of adult and neonatal human donors. We validated the single-nucleus findings using RNA fluorescence in situ hybridization, in situ sequencing, and computational approaches. RESULTS: We created the first comprehensive atlas of human pancreas cells including epithelial and nonepithelial constituents, and uncovered 3 distinct acinar cell types, with possible implications for homeostatic and inflammatory processes of the pancreas. The comparison with neonatal single-nucleus sequencing data showed a different cellular composition of the endocrine tissue, highlighting the tissue dynamics occurring during development. By applying spatial cartography, involving cell proximity mapping through in situ sequencing, we found evidence of specific cell type neighborhoods, dynamic topographies in the endocrine and exocrine pancreas, and principles of morphologic organization of the organ. Furthermore, similar analyses in chronic pancreatitis biopsy samples showed the presence of acinar-REG+ cells, a reciprocal association between macrophages and activated stellate cells, and a new potential role of tuft cells in this disease. CONCLUSIONS: Our human pancreas cell atlas can be interrogated to understand pancreatic cell biology and provides a crucial reference set for comparisons with diseased tissue samples to map the cellular foundations of pancreatic diseases.


Asunto(s)
Núcleo Celular/metabolismo , Páncreas Exocrino/citología , Adolescente , Adulto , Factores de Edad , Anciano , Animales , Fraccionamiento Celular , Niño , Preescolar , Femenino , Humanos , Hibridación Fluorescente in Situ , Lactante , Masculino , Persona de Mediana Edad , Modelos Animales , Páncreas Exocrino/crecimiento & desarrollo , Páncreas Exocrino/metabolismo , RNA-Seq , Análisis de la Célula Individual/métodos , Porcinos , Adulto Joven
4.
Nat Biotechnol ; 38(6): 747-755, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32518403

RESUMEN

Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas.


Asunto(s)
Análisis de Secuencia de ARN , Análisis de la Célula Individual , Animales , Benchmarking , Línea Celular , Bases de Datos Genéticas , Genómica/métodos , Genómica/normas , Humanos , Ratones , Análisis de Secuencia de ARN/métodos , Análisis de Secuencia de ARN/normas , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/normas
5.
EMBO J ; 39(10): e105114, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32246845

RESUMEN

The SARS-CoV-2 pandemic affecting the human respiratory system severely challenges public health and urgently demands for increasing our understanding of COVID-19 pathogenesis, especially host factors facilitating virus infection and replication. SARS-CoV-2 was reported to enter cells via binding to ACE2, followed by its priming by TMPRSS2. Here, we investigate ACE2 and TMPRSS2 expression levels and their distribution across cell types in lung tissue (twelve donors, 39,778 cells) and in cells derived from subsegmental bronchial branches (four donors, 17,521 cells) by single nuclei and single cell RNA sequencing, respectively. While TMPRSS2 is strongly expressed in both tissues, in the subsegmental bronchial branches ACE2 is predominantly expressed in a transient secretory cell type. Interestingly, these transiently differentiating cells show an enrichment for pathways related to RHO GTPase function and viral processes suggesting increased vulnerability for SARS-CoV-2 infection. Our data provide a rich resource for future investigations of COVID-19 infection and pathogenesis.


Asunto(s)
Bronquios/citología , Expresión Génica , Pulmón/citología , Peptidil-Dipeptidasa A/genética , Serina Endopeptidasas/genética , Análisis de la Célula Individual , Adulto , Envejecimiento , Enzima Convertidora de Angiotensina 2 , Bronquios/metabolismo , COVID-19 , Células Cultivadas , Enfermedad Crónica/epidemiología , Infecciones por Coronavirus/genética , Células Epiteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Alemania , Células Caliciformes/metabolismo , Humanos , Pulmón/metabolismo , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/genética , Estándares de Referencia , Análisis de Secuencia de ARN , Caracteres Sexuales , Fumar , Bancos de Tejidos
6.
Arch Toxicol ; 94(1): 151-171, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31712839

RESUMEN

The first in vitro tests for developmental toxicity made use of rodent cells. Newer teratology tests, e.g. developed during the ESNATS project, use human cells and measure mechanistic endpoints (such as transcriptome changes). However, the toxicological implications of mechanistic parameters are hard to judge, without functional/morphological endpoints. To address this issue, we developed a new version of the human stem cell-based test STOP-tox(UKN). For this purpose, the capacity of the cells to self-organize to neural rosettes was assessed as functional endpoint: pluripotent stem cells were allowed to differentiate into neuroepithelial cells for 6 days in the presence or absence of toxicants. Then, both transcriptome changes were measured (standard STOP-tox(UKN)) and cells were allowed to form rosettes. After optimization of staining methods, an imaging algorithm for rosette quantification was implemented and used for an automated rosette formation assay (RoFA). Neural tube toxicants (like valproic acid), which are known to disturb human development at stages when rosette-forming cells are present, were used as positive controls. Established toxicants led to distinctly different tissue organization and differentiation stages. RoFA outcome and transcript changes largely correlated concerning (1) the concentration-dependence, (2) the time dependence, and (3) the set of positive hits identified amongst 24 potential toxicants. Using such comparative data, a prediction model for the RoFA was developed. The comparative analysis was also used to identify gene dysregulations that are particularly predictive for disturbed rosette formation. This 'RoFA predictor gene set' may be used for a simplified and less costly setup of the STOP-tox(UKN) assay.


Asunto(s)
Células-Madre Neurales/efectos de los fármacos , Trastornos del Neurodesarrollo/inducido químicamente , Neurotoxinas/farmacología , Formación de Roseta/métodos , Pruebas de Toxicidad/métodos , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Tiempo
7.
Arch Toxicol ; 92(12): 3487-3503, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30298209

RESUMEN

Genomic drift affects the functional properties of cell lines, and the reproducibility of data from in vitro studies. While chromosomal aberrations and mutations in single pivotal genes are well explored, little is known about effects of minor, possibly pleiotropic, genome changes. We addressed this question for the human dopaminergic neuronal precursor cell line LUHMES by comparing two subpopulations (SP) maintained either at the American-Type-Culture-Collection (ATCC) or by the original provider (UKN). Drastic differences in susceptibility towards the specific dopaminergic toxicant 1-methyl-4-phenylpyridinium (MPP+) were observed. Whole-genome sequencing was performed to identify underlying genetic differences. While both SP had normal chromosome structures, they displayed about 70 differences on the level of amino acid changing events. Some of these differences were confirmed biochemically, but none offered a direct explanation for the altered toxicant sensitivity pattern. As second approach, markers known to be relevant for the intended use of the cells were specifically tested. The "ATCC" cells rapidly down-regulated the dopamine-transporter and tyrosine-hydroxylase after differentiation, while "UKN" cells maintained functional levels. As the respective genes were not altered themselves, we conclude that polygenic complex upstream changes can have drastic effects on biochemical features and toxicological responses of relatively similar SP of cells.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Neuronas Dopaminérgicas/metabolismo , Flujo Genético , Secuenciación Completa del Genoma/métodos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Cultivadas , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Regulación hacia Abajo/genética , Humanos , Reproducibilidad de los Resultados , Tirosina 3-Monooxigenasa/genética
8.
Genome Res ; 27(12): 1974-1987, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29133310

RESUMEN

Sex chromosomes differentiated from different ancestral autosomes in various vertebrate lineages. Here, we trace the functional evolution of the XY Chromosomes of the green anole lizard (Anolis carolinensis), on the basis of extensive high-throughput genome, transcriptome and histone modification sequencing data and revisit dosage compensation evolution in representative mammals and birds with substantial new expression data. Our analyses show that Anolis sex chromosomes represent an ancient XY system that originated at least ≈160 million years ago in the ancestor of Iguania lizards, shortly after the separation from the snake lineage. The age of this system approximately coincides with the ages of the avian and two mammalian sex chromosomes systems. To compensate for the almost complete Y Chromosome degeneration, X-linked genes have become twofold up-regulated, restoring ancestral expression levels. The highly efficient dosage compensation mechanism of Anolis represents the only vertebrate case identified so far to fully support Ohno's original dosage compensation hypothesis. Further analyses reveal that X up-regulation occurs only in males and is mediated by a male-specific chromatin machinery that leads to global hyperacetylation of histone H4 at lysine 16 specifically on the X Chromosome. The green anole dosage compensation mechanism is highly reminiscent of that of the fruit fly, Drosophila melanogaster Altogether, our work unveils the convergent emergence of a Drosophila-like dosage compensation mechanism in an ancient reptilian sex chromosome system and highlights that the evolutionary pressures imposed by sex chromosome dosage reductions in different amniotes were resolved in fundamentally different ways.


Asunto(s)
Compensación de Dosificación (Genética) , Drosophila/genética , Evolución Molecular , Lagartos/genética , Animales , Epigénesis Genética , Femenino , Genoma , Humanos , Masculino , Procesos de Determinación del Sexo , Transcriptoma , Cromosoma X , Cromosoma Y
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...