Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 13(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36363850

RESUMEN

A solar cell structure with a graded bandgap absorber layer based on InGaN has been proposed to overcome early predicted efficiency. Technological issues such as carrier concentration in the p- and n-type are based on the data available in the literature. The influence of carrier concentration-dependent mobility on the absorber layer has been studied, obtaining considerable improvements in efficiency and photocurrent density. Efficiency over the tandem solar cell theoretical limit has been reached. A current density of 52.95 mA/cm2, with an efficiency of over 85%, is determined for a PiN structure with an InGaN step-graded bandgap absorption layer and 65.44% of power conversion efficiency for the same structure considering piezoelectric polarization of fully-strained layers and interfaces with electron and hole surface recombination velocities of 10-3 cm/s.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA