Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 591(7850): 477-481, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627873

RESUMEN

Mitochondrial DNA double-strand breaks (mtDSBs) are toxic lesions that compromise the integrity of mitochondrial DNA (mtDNA) and alter mitochondrial function1. Communication between mitochondria and the nucleus is essential to maintain cellular homeostasis; however, the nuclear response to mtDSBs remains unknown2. Here, using mitochondrial-targeted transcription activator-like effector nucleases (TALENs)1,3,4, we show that mtDSBs activate a type-I interferon response that involves the phosphorylation of STAT1 and activation of interferon-stimulated genes. After the formation of breaks in the mtDNA, herniation5 mediated by BAX and BAK releases mitochondrial RNA into the cytoplasm and triggers a RIG-I-MAVS-dependent immune response. We further investigated the effect of mtDSBs on interferon signalling after treatment with ionizing radiation and found a reduction in the activation of interferon-stimulated genes when cells that lack mtDNA are exposed to gamma irradiation. We also show that mtDNA breaks synergize with nuclear DNA damage to mount a robust cellular immune response. Taken together, we conclude that cytoplasmic accumulation of mitochondrial RNA is an intrinsic immune surveillance mechanism for cells to cope with mtDSBs, including breaks produced by genotoxic agents.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Mitocondrial/inmunología , Inmunidad Innata/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular , Células Cultivadas , Roturas del ADN de Doble Cadena/efectos de la radiación , ADN Mitocondrial/efectos de la radiación , Humanos , Mitocondrias/inmunología , Mitocondrias/efectos de la radiación , Comunicación Paracrina , Radiación Ionizante , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
2.
PLoS One ; 14(4): e0214552, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30943245

RESUMEN

Though it is an essential process, transcription can be a source of genomic instability. For instance, it may generate RNA:DNA hybrids as the nascent transcript hybridizes with the complementary DNA template. These hybrids, called R-loops, act as a major cause of replication fork stalling and DNA breaks. In this study, we show that lowering transcription and R-loop levels in plastids of Arabidopsis thaliana reduces DNA rearrangements and mitigates plastid genome instability phenotypes. This effect can be observed on a genome-wide scale, as the loss of the plastid sigma transcription factor SIG6 prevents DNA rearrangements by favoring conservative repair in the presence of ciprofloxacin-induced DNA damage or in the absence of plastid genome maintenance actors such as WHY1/WHY3, RECA1 and POLIB. Additionally, resolving R-loops by the expression of a plastid-targeted exogenous RNAse H1 produces similar results. We also show that highly-transcribed genes are more susceptible to DNA rearrangements, as increased transcription of the psbD operon by SIG5 correlates with more locus-specific rearrangements. The effect of transcription is not specific to Sigma factors, as decreased global transcription levels by mutation of heat-stress-induced factor HSP21, mutation of nuclear-encoded polymerase RPOTp, or treatment with transcription-inhibitor rifampicin all prevent the formation of plastid genome rearrangements, especially under induced DNA damage conditions.


Asunto(s)
Arabidopsis/genética , Daño del ADN , Reparación del ADN , Regulación de la Expresión Génica de las Plantas , Genoma del Cloroplasto , Inestabilidad Genómica , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Clorofila/química , Cloroplastos/genética , Cartilla de ADN/genética , Replicación del ADN , ADN de Plantas/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Genoma de Planta , Mutación , Fenotipo , Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Recombinasas/genética , Rifampin/farmacología , Análisis de Secuencia de ADN , Transcripción Genética
3.
J Cell Biol ; 216(8): 2355-2371, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28637749

RESUMEN

Telomerase can generate a novel telomere at DNA double-strand breaks (DSBs), an event called de novo telomere addition. How this activity is suppressed remains unclear. Combining single-molecule imaging and deep sequencing, we show that the budding yeast telomerase RNA (TLC1 RNA) is spatially segregated to the nucleolus and excluded from sites of DNA repair in a cell cycle-dependent manner. Although TLC1 RNA accumulates in the nucleoplasm in G1/S, Pif1 activity promotes TLC1 RNA localization in the nucleolus in G2/M. In the presence of DSBs, TLC1 RNA remains nucleolar in most G2/M cells but accumulates in the nucleoplasm and colocalizes with DSBs in rad52Δ cells, leading to de novo telomere additions. Nucleoplasmic accumulation of TLC1 RNA depends on Cdc13 localization at DSBs and on the SUMO ligase Siz1, which is required for de novo telomere addition in rad52Δ cells. This study reveals novel roles for Pif1, Rad52, and Siz1-dependent sumoylation in the spatial exclusion of telomerase from sites of DNA repair.


Asunto(s)
Ciclo Celular , Nucléolo Celular/enzimología , Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Hongos/metabolismo , ARN de Hongos/metabolismo , ARN/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Telomerasa/metabolismo , Telómero/metabolismo , Transporte Activo de Núcleo Celular , Bleomicina/toxicidad , Ciclo Celular/efectos de los fármacos , Nucléolo Celular/efectos de los fármacos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN/efectos de los fármacos , ADN de Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , ARN/genética , ARN de Hongos/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Imagen Individual de Molécula , Sumoilación , Telomerasa/genética , Telómero/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Factores de Tiempo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Bioessays ; 37(10): 1086-94, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26222836

RESUMEN

In the organelles of plants and mammals, recent evidence suggests that genomic instability stems in large part from template switching events taking place during DNA replication. Although more than one mechanism may be responsible for this, some similarities exist between the different proposed models. These can be separated into two main categories, depending on whether they involve a single-strand-switching or a reciprocal-strand-switching event. Single-strand-switching events lead to intermediates containing Y junctions, whereas reciprocal-strand-switching creates Holliday junctions. Common features in all the described models include replication stress, fork stalling and the presence of inverted repeats, but no single element appears to be required in all cases. We review the field, and examine the ideas that several mechanisms may take place in any given genome, and that the presence of palindromes or inverted repeats in certain regions may favor specific rearrangements.


Asunto(s)
Replicación del ADN/fisiología , Inestabilidad Genómica/genética , Orgánulos/genética , Inversión de Secuencia/fisiología , Animales , Humanos , Recombinación Genética , Moldes Genéticos
5.
Genome Res ; 25(5): 645-54, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25800675

RESUMEN

Failure to maintain organelle genome stability has been linked to numerous phenotypes, including variegation and cytosolic male sterility (CMS) in plants, as well as cancer and neurodegenerative diseases in mammals. Here we describe a next-generation sequencing approach that precisely maps and characterizes organelle DNA rearrangements in a single genome-wide experiment. In addition to displaying global portraits of genomic instability, it surprisingly unveiled an abundance of short-range rearrangements in Arabidopsis thaliana and human organelles. Among these, short-range U-turn-like inversions reach 25% of total rearrangements in wild-type Arabidopsis plastids and 60% in human mitochondria. Furthermore, we show that replication stress correlates with the accumulation of this type of rearrangement, suggesting that U-turn-like rearrangements could be the outcome of a replication-dependent mechanism. We also show that U-turn-like rearrangements are mostly generated using microhomologies and are repressed in plastids by Whirly proteins WHY1 and WHY3. A synergistic interaction is also observed between the genes for the plastid DNA recombinase RECA1 and those encoding plastid Whirly proteins, and the triple mutant why1why3reca1 accumulates almost 60 times the WT levels of U-turn-like rearrangements. We thus propose that the process leading to U-turn-like rearrangements may constitute a RecA-independent mechanism to restart stalled forks. Our results reveal that short-range rearrangements, and especially U-turn-like rearrangements, are a major factor of genomic instability in organelles, and this raises the question of whether they could have been underestimated in diseases associated with mitochondrial dysfunction.


Asunto(s)
Arabidopsis/genética , ADN de Cloroplastos/genética , ADN Mitocondrial/genética , Reordenamiento Génico , Genoma Humano , Genoma de Planta , Inestabilidad Genómica , Proteínas de Arabidopsis/genética , Ligamiento Genético , Humanos , Recombinación Genética
6.
Structure ; 23(1): 126-138, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25497731

RESUMEN

PML and several other proteins localizing in PML-nuclear bodies (PML-NB) contain phosphoSIMs (SUMO-interacting motifs), and phosphorylation of this motif plays a key role in their interaction with SUMO family proteins. We examined the role that phosphorylation plays in the binding of the phosphoSIMs of PML and Daxx to SUMO1 at the atomic level. The crystal structures of SUMO1 bound to unphosphorylated and tetraphosphorylated PML-SIM peptides indicate that three phosphoserines directly contact specific positively charged residues of SUMO1. Surprisingly, the crystal structure of SUMO1 bound to a diphosphorylated Daxx-SIM peptide indicate that the hydrophobic residues of the phosphoSIM bind in a manner similar to that seen with PML, but important differences are observed when comparing the phosphorylated residues. Together, the results provide an atomic level description of how specific acetylation patterns within different SUMO family proteins can work together with phosphorylation of phosphoSIM's regions of target proteins to regulate binding specificity.


Asunto(s)
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteína SUMO-1/química , Proteína SUMO-1/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Proteínas Co-Represoras , Cristalografía por Rayos X , Células HEK293 , Humanos , Modelos Moleculares , Chaperonas Moleculares , Datos de Secuencia Molecular , Fosforilación , Proteína de la Leucemia Promielocítica , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...