Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 141: 106888, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37839143

RESUMEN

Trichomonas vaginalis, a flagellated and anaerobic protozoan, is a causative agent of trichomoniasis. This disease is among the world's most common non-viral sexually transmitted infection. A single class drug, nitroimidazoles, is currently available for the trichomoniasis treatment. However, resistant isolates have been identified from unsuccessfully treated patients. Thus, there is a great challenge for a discovery of innovative anti-T. vaginalis agents. As part of our ongoing search for antiprotozoal chalcones, we designed and synthesized a series of 21 phenolic chalcones, which were evaluated against T. vaginalis trophozoites. Structure-activity relationship indicated hydroxyl group plays a role key in antiprotozoal activity. 4'-Hydroxychalcone (4HC) was the most active compound (IC50 = 27.5 µM) and selected for detailed bioassays. In vitro and in vivo evaluations demonstrated 4HC was not toxic against human erythrocytes and Galleria mellonella larvae. Trophozoites of T. vaginalis were treated with 4HC and did not present significant reactive oxygen species (ROS) accumulation. However, compound 4HC was able to increase ROS accumulation in neutrophils coincubated with T. vaginalis. qRT-PCR Experiments indicated that 4HC did not affect the expression of pyruvate:ferredoxin oxidoreductase (PFOR) and ß-tubulin genes. In silico simulations, using purine nucleoside phosphorylase of T. vaginalis (TvPNP), corroborated 4HC as a promising ligand. Compound 4HC was able to establish interactions with residues D21, G20, M180, R28, R87 and T90 through hydrophobic interactions, π-donor hydrogen bond and hydrogen bonds. Altogether, these results open new avenues for phenolic chalcones to combat trichomoniasis, a parasitic neglected infection.


Asunto(s)
Antiprotozoarios , Chalconas , Tricomoniasis , Trichomonas vaginalis , Humanos , Trichomonas vaginalis/metabolismo , Chalconas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tricomoniasis/tratamiento farmacológico , Tricomoniasis/parasitología , Antiprotozoarios/metabolismo , Fenoles/metabolismo
2.
BMC Complement Med Ther ; 23(1): 374, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872494

RESUMEN

BACKGROUND: Given the rising occurrence of antibiotic resistance due to the existence and ongoing development of resistant bacteria and phenotypes, the identification of new treatments and sources of antimicrobial agents is of utmost urgency. An important strategy for tackling bacterial resistance involves the utilization of drug combinations, and natural products derived from plants hold significant potential as a rich source of bioactive compounds that can act as effective adjuvants. This study, therefore, aimed to assess the antibacterial potential and the chemical composition of Miconia albicans, a Brazilian medicinal plant used to treat various diseases. METHODS: Ethanolic extracts from leaves and stems of M. albicans were obtained and subsequently partitioned to give the corresponding hexane, chloroform, ethyl acetate, and hydromethanolic phases. All extracts and phases had their chemical constitution investigated by HPLC-DAD-MS/MS and GC-MS and were assessed for their antibiofilm and antimicrobial efficacy against Staphylococcus aureus. Furthermore, their individual effects and synergistic potential in combination with antibiotics were examined against clinical strains of both S. aureus and Acinetobacter baumannii. In addition, 10 isolated compounds were obtained from the leaves phases and used for confirmation of the chemical profiles and for antibacterial assays. RESULTS: Based on the chemical profile analysis, 32 compounds were successfully or tentatively identified, including gallic and ellagic acid derivatives, flavonol glycosides, triterpenes and pheophorbides. Extracts and phases obtained from the medicinal plant M. albicans demonstrated synergistic effects when combined with the commercial antibiotics ampicillin and ciprofloxacin, against multi-drug resistant bacteria S. aureus and A. baumannii, restoring their antibacterial efficacy. Extracts and phases also exhibited antibiofilm property against S. aureus. Three key compounds commonly found in the samples, namely gallic acid, quercitrin, and corosolic acid, did not exhibit significant antibacterial activity when assessed individually or in combination with antibiotics against clinical bacterial strains. CONCLUSIONS: Our findings reveal that M. albicans exhibits remarkable adjuvant potential for enhancing the effectiveness of antimicrobial drugs against resistant bacteria.


Asunto(s)
Acinetobacter baumannii , Antiinfecciosos , Melastomataceae , Plantas Medicinales , Staphylococcus aureus , Ciprofloxacina/farmacología , Plantas Medicinales/química , Espectrometría de Masas en Tándem , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Ampicilina/farmacología , Antiinfecciosos/farmacología , Bacterias
3.
Chem Biodivers ; 20(11): e202301238, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37769153

RESUMEN

Sixteen triterpenoids with various skeletal types, five phenylpropanoid derivatives, and two flavonoids were isolated from a propolis sample produced by Apis mellifera collected in the Atlantic Forest of Midwest Brazil. Among these compounds, six triterpenes, namely 3ß,20R-dihydroxylanost-24-en-3-yl-palmitate, (23E)-25-methoxycycloartan-23-en-3-one, 24-methylenecycloartenone, epi-lupeol, epi-α-amyrin, and epi-ß-amyrin are being reported for the first time in propolis, while cycloartenone, (E)-cinnamyl benzoate, and (E)-cinnamyl cinnamate are new findings in Brazilian propolis. The presence of cycloartane- and lanostane-type triterpenoids, the latter being a class of compounds of restricted distribution in propolis worldwide, has not been reported in propolis from Midwest Brazil until now. The ethyl acetate phase obtained from the ethanol extract was effective in preventing biofilm formation by Staphylococcus aureus, with an inhibition rate of about 96 % at 0.5 mg.mL-1 , and with quercetin isolated as one of its active constituents. In contrast, the hexane phase exhibited notable antibacterial activity against Pseudomonas aeruginosa, inhibiting bacterial growth by 92 % at 0.5 mg.mL-1 ; however, none of the triterpenoids isolated from this phase proved active against this pathogen. The ethanol extract was neither toxic nor mutagenic at the concentrations tested, as determined by the in vivo SMART assay on Drosophila melanogaster, even under conditions of high metabolic activation.


Asunto(s)
Ascomicetos , Própolis , Triterpenos , Animales , Própolis/farmacología , Própolis/química , Brasil , Mutágenos , Drosophila melanogaster , Antibacterianos/química , Etanol , Biopelículas , Extractos Vegetales , Pruebas de Sensibilidad Microbiana
4.
Anal Methods ; 15(30): 3752-3757, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37475605

RESUMEN

This technical note describes a novel and straightforward experimental strategy for the extraction/capture of DNA using magnetic ionic liquid (MIL) followed by real time-polymerase chain reaction (qPCR) analysis. An affordable and low-cost magneto-based multiwell platform was first examined for capturing DNA allowing for simultaneous extractions that increased the analysis throughput of the experimental workflow. This configuration was composed of a series of neodymium rod magnets attached to a multiwell device in which a magneto-active extraction phase (MIL) was suspended for a single drop microextraction (SDME) approach. In this configuration, up to 32 extractions were able to be performed simultaneously, and DNA was successfully extracted from aqueous samples. Furthermore, as a proof-of-concept, this affordable and simple experimental strategy proved to be efficient for the extraction/capture of DNA from challenging samples such as whole blood without any pretreatment. This fact also consists of important feature compared to previous methodologies that required additional steps of sample preparation.


Asunto(s)
Líquidos Iónicos , ADN , Imanes , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Fenómenos Magnéticos
5.
BMC Microbiol ; 23(1): 157, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37246220

RESUMEN

BACKGROUND: Acinetobacter baumannii is one of the main causes of healthcare-associated infections that threaten public health, and carbapenems, such as meropenem, have been a therapeutic option for these infections. Therapeutic failure is mainly due to the antimicrobial resistance of A. baumannii, as well as the presence of persister cells. Persisters constitute a fraction of the bacterial population that present a transient phenotype capable of tolerating supra-lethal concentrations of antibiotics. Some proteins have been suggested to be involved in the onset and/or maintenance of this phenotype. Thus, we investigated the mRNA levels of the adeB (AdeABC efflux pump component), ompA, and ompW (outer membrane proteins) in A. baumannii cells before and after exposure to meropenem. RESULTS: We found a significant increase (p-value < 0.05) in the expression of ompA (> 5.5-fold) and ompW (> 10.5-fold) in persisters. However, adeB did not show significantly different expression levels when comparing treated and untreated cells. Therefore, we suggest that these outer membrane proteins, especially OmpW, could be part of the mechanism of A. baumannii persisters to deal with the presence of high doses of meropenem. We also observed in the Galleria mellonella larvae model that persister cells are more virulent than regular ones, as evidenced by their LD50 values. CONCLUSIONS: Taken together, these data contribute to the understanding of the phenotypic features of A. baumannii persisters and their relation to virulence, as well as highlight OmpW and OmpA as potential targets for drug development against A. baumannii persisters.


Asunto(s)
Acinetobacter baumannii , Meropenem/farmacología , Virulencia , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
6.
Eur J Clin Microbiol Infect Dis ; 42(4): 399-411, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36790530

RESUMEN

PURPOSE: This study aimed to evaluate and compare the presence of genes related to surface proteins between isolates of Streptococcus pneumoniae from healthy carriers (HC) and invasive pneumococcal disease (IPD) with a particular focus on serotype 19A. METHODS: The presence of these genes was identified by real-time PCR. Subsequently, we employed the Galleria mellonella larval infection model to study their effect on pathogenicity in vivo. RESULTS: The percentage of selected virulence genes was similar between the HC and IPD groups (p > 0.05), and the genes lytA, nanB, pavA, pcpA, phtA, phtB, phtE, rrgA, and sipA were all present in both groups. However, the virulence profile of the isolates differed individually between HC and IPD groups. The highest lethality in G. mellonella was for IPD isolates (p < 0.01), even when the virulence profile was the same as compared to the HC isolates or when the nanA, pspA, pspA-fam1, and pspC genes were not present. CONCLUSIONS: The occurrence of the investigated virulence genes was similar between HC and IPD S. pneumoniae serotype 19A groups. However, the IPD isolates showed a higher lethality in the alternative G. mellonella model than the HC isolates, regardless of the virulence gene composition, indicating that other virulence factors may play a decisive role in virulence. Currently, this is the first report using the in vivo G. mellonella model to study the virulence of clinical isolates of S. pneumoniae.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Humanos , Virulencia/genética , Serogrupo , Pruebas de Sensibilidad Microbiana , Infecciones Neumocócicas/microbiología , Serotipificación , Vacunas Neumococicas
7.
Parasitol Res ; 121(3): 981-989, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35113221

RESUMEN

Trichomoniasis is the most common non-viral sexually transmitted infection worldwide and it may have serious consequences, especially for women. Currently, 5-nitroimidazole drugs are the treatment of choice for trichomoniasis, although presenting adverse effects and reported cases of drug resistance. Metabolites isolated from marine fungi have attracted considerable attention due to their unique chemical structures with diverse biological activities, including antiprotozoal activity. In this study, we showed the anti-Trichomonas vaginalis activity of fractions obtained from marine fungi and the chemical composition of the most active fraction was determined. Ethyl acetate fractions of the fungus Aspergillus niger (EAE03) and Trichoderma harzianum/Hypocrea lixii complex (EAE09) were active against T. vaginalis. These samples, EAE03 and EAE09, were also effective against the fresh clinical isolate metronidazole-resistant TV-LACM2R, presenting MIC values of 2.0 mg/mL and 1.0 mg/mL, respectively. The same MIC values were found against ATCC 30,236 T. vaginalis isolate. In vitro cytotoxicity revealed only the fraction named EAE03 with no cytotoxic effect; however, the active fractions did not promote a significant hemolytic effect after 1-h incubation. Already, the in vivo toxicity evaluation using Galleria mellonella larvae demonstrated that none of the tested samples caused a reduction in animal survival. The fraction EAE03 was followed for purification steps and analyzed by LC-DAD-MS. Eleven compounds were annotated, including butyrolactone, butanolide, and atromentin. Overall, the range of activities reported confirms the potential of marine fungi to produce bioactive molecules.


Asunto(s)
Antiprotozoarios , Tricomoniasis , Trichomonas vaginalis , Animales , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Femenino , Hongos , Humanos , Metronidazol/farmacología , Tricomoniasis/tratamiento farmacológico
8.
Chemosphere ; 293: 133600, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35031254

RESUMEN

The obvious contrast between the remarkable durability and the high consumption of plastic products leads to the deposition of at least 100 million tons of plastics per year in nature. Since 2010, several studies have shown the potential of insect larvae to biodegrade different types of plastics, at higher rates than those reported for microorganisms. This review discusses a compilation of studies about the consumption and biodegradation of hydrocarbon-based plastics, particularly PE, PS, PP and PVC, by lepidopteran and coleopteran larvae. Insects of the Coleoptera order seem to have a better adaptation for PS biodegradation, while those of the Lepidoptera order can better biodegrade PE. Tenebrio molitor biomineralize PE and PS into CO2, and PVC into HCl; while Tenebrio obscurus and Zophobas atratus converts PE and PS into CO2, respectively. Plastic biodegradation by T. molitor has been shown to be dependent on microbiota, exception for PE. Similar PS and PE biodegradation profile has been shown for T. obscurus. PS, PP and PE biodegradation by Z. atratus is also reported to be microbial-dependent. For Galleria mellonella, microbial role on PE biodegradation is still controversial, but the PS metabolism was proved to be microbiota-independent. Advances in this field has stimulated new studies with other insect species, which need to be better explored. Uncovering and understanding the chemical processes behind the innate plastic biodegradation by insect larvae will open the perspective to new eco-friendly innovative biotechnological solutions for the challenge of plastic waste.


Asunto(s)
Plásticos , Tenebrio , Animales , Biodegradación Ambiental , Hidrocarburos , Insectos , Larva
9.
Appl Environ Microbiol ; 87(18): e0085921, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34190608

RESUMEN

Bats are a key reservoir of coronaviruses (CoVs), including the agent of the severe acute respiratory syndrome, SARS-CoV-2, responsible for the recent deadly viral pneumonia pandemic. However, understanding how bats can harbor several microorganisms without developing illnesses is still a matter under discussion. Viruses and other pathogens are often studied as stand-alone entities, despite that, in nature, they mostly live in multispecies associations called biofilms-both externally and within the host. Microorganisms in biofilms are enclosed by an extracellular matrix that confers protection and improves survival. Previous studies have shown that viruses can secondarily colonize preexisting biofilms, and viral biofilms have also been described. In this review, we raise the perspective that CoVs can persistently infect bats due to their association with biofilm structures. This phenomenon potentially provides an optimal environment for nonpathogenic and well-adapted viruses to interact with the host, as well as for viral recombination. Biofilms can also enhance virion viability in extracellular environments, such as on fomites and in aquatic sediments, allowing viral persistence and dissemination. Moreover, understanding the biofilm lifestyle of CoVs in reservoirs might contribute to explaining several burning questions as to persistence and transmissibility of highly pathogenic emerging CoVs.


Asunto(s)
Biopelículas , COVID-19/virología , Quirópteros/virología , Reservorios de Enfermedades/virología , SARS-CoV-2/fisiología , Animales , Humanos , Neumonía Viral/virología , SARS-CoV-2/genética
10.
Microb Pathog ; 149: 104571, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33075517

RESUMEN

Staphylococcus aureus is an opportunistic pathogen involved in several human diseases and presents ability to produce many virulence factors and resistance to antibacterial agents. One of the current strategies to combat such multidrug resistant bacteria is the antibacterial combination therapy. Myricetin is a flavonoid capable of inhibiting several S. aureus virulence factors without influencing on bacterial growth. Therefore, the combination of antibacterials with the antivirulence compound myricetin may provide a positive interaction to control multidrug resistant-bacteria. This work aims to evaluate the effect of the combination of myricetin with oxacillin and vancomycin against methicillin resistant S. aureus (MRSA) and vancomycin intermediate resistant S. aureus (VISA) strains. Concentrations used in combination assays were determined according to the minimum inhibitory concentration (MIC) for antibacterials and to the biofilm minimum inhibitory concentration (BMIC) for myricetin. Checkerboard evaluations showed reduction in MIC for antibacterials in presence of myricetin and time-kill assays confirmed the synergism for these combinations, except for VISA strain when the flavonoid was combined with vancomycin. Importantly, when myricetin was combined with oxacillin, MRSA strain became susceptible to the antibacterial. Myricetin did not reduce staphyloxanthin production, indicating that the oxacillin susceptibility seems not to be related to this step of functional membrane microdomains. In vivo evaluations using Galleria mellonella confirmed the efficacy of oxacillin plus myricetin in treatment of MRSA infected-larvae when compared to the control groups, increasing in 20% host survival. The present work points out the potential of antibacterial and antivirulence compounds combinations as new alternative to control infections by multidrug resistant-bacteria.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Sinergismo Farmacológico , Flavonoides/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus
11.
Fungal Genet Biol ; 144: 103438, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32738289

RESUMEN

Cryptococcus gattii is an etiologic agent of cryptococcosis, a potentially fatal disease that affects humans and animals. The successful infection of mammalian hosts by cryptococcal cells relies on their ability to infect and survive in macrophages. Such phagocytic cells present a hostile environment to intracellular pathogens via the production of reactive nitrogen and oxygen species, as well as low pH and reduced nutrient bioavailability. To overcome the low-metal environment found during infection, fungal pathogens express high-affinity transporters, including members of the ZIP family. Previously, we determined that functional zinc uptake driven by Zip1 and Zip2 is necessary for full C.gattiivirulence. Here, we characterized the ZIP3 gene of C. gattii, an ortholog of the Saccharomyces cerevisiae ATX2, which codes a manganese transporter localized to the membrane of the Golgi apparatus. Cryptococcal cells lacking Zip3 were tolerant to toxic concentrations of manganese and had imbalanced expression of intracellular metal transporters, such as the vacuolar Pmc1 and Vcx1, as well as the Golgi Pmr1. Moreover, null mutants of the ZIP3 gene displayed higher sensitivity to reactive oxygen species (ROS) and substantial alteration in the expression of ROS-detoxifying enzyme-coding genes. In line with these phenotypes, cryptococcal cells displayed decreased virulence in a non-vertebrate model of cryptococcosis. Furthermore, we found that the ZIP3 null mutant strain displayed decreased melanization and secretion of the major capsular component glucuronoxylomannan, as well as an altered extracellular vesicle dimensions profile. Collectively, our data suggest that Zip3 activity impacts the physiology, and consequently, several virulence traits of C. gattii.


Asunto(s)
Proteínas de Transporte de Catión/genética , Cryptococcus gattii/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Criptococosis/genética , Criptococosis/microbiología , Criptococosis/patología , Cryptococcus gattii/metabolismo , Cryptococcus gattii/patogenicidad , Humanos , Macrófagos/metabolismo , Manganeso/metabolismo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Virulencia/genética
12.
Parasitol Res ; 119(8): 2587-2595, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32524267

RESUMEN

Lycorine is an Amaryllidaceae alkaloid that presents anti-Trichomonas vaginalis activity. T. vaginalis causes trichomoniasis, the most common non-viral sexually transmitted infection. The modulation of T. vaginalis purinergic signaling through the ectonucleotidases, nucleoside triphosphate diphosphohydrolase (NTPDase), and ecto-5'-nucleotidase represents new targets for combating the parasite. With this knowledge, the aim of this study was to investigate whether NTPDase and ecto-5'-nucleotidase inhibition by lycorine could lead to extracellular ATP accumulation. Moreover, the lycorine effect on the reactive oxygen species (ROS) production by neutrophils and parasites was evaluated as well as the alkaloid toxicity. The metabolism of purines was assessed by HPLC. ROS production was measured by flow cytometry. Cytotoxicity against epithelial vaginal cells and fibroblasts was tested, as well as the hemolytic effect of lycorine and its in vivo toxicity in Galleria mellonella larvae. Our findings showed that lycorine caused ATP accumulation due to NTPDase inhibition. The alkaloid did not affect the ROS production by T. vaginalis; however, it increased ROS levels in neutrophils incubated with lycorine-treated trophozoites. Lycorine was cytotoxic against vaginal epithelial cells and fibroblasts; conversely, it was not hemolytic neither exhibited toxicity against the in vivo model of G. mellonella larvae. Overall, besides having anti-T. vaginalis activity, lycorine modulates ectonucleotidases and stimulates neutrophils to secrete ROS. This mechanism of action exerted by the alkaloid could enhance the susceptibility of T. vaginalis to host immune cell, contributing to protozoan clearance.


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Amaryllidaceae/química , Antiprotozoarios/farmacología , Neutrófilos/metabolismo , Nucleósido-Trifosfatasa/antagonistas & inhibidores , Fenantridinas/farmacología , Extractos Vegetales/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Tricomoniasis/metabolismo , Trichomonas vaginalis/enzimología , 5'-Nucleotidasa/antagonistas & inhibidores , 5'-Nucleotidasa/metabolismo , Humanos , Neutrófilos/efectos de los fármacos , Nucleósido-Trifosfatasa/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tricomoniasis/parasitología , Trichomonas vaginalis/efectos de los fármacos , Trichomonas vaginalis/crecimiento & desarrollo , Trichomonas vaginalis/metabolismo , Trofozoítos/efectos de los fármacos , Trofozoítos/enzimología , Trofozoítos/crecimiento & desarrollo , Trofozoítos/metabolismo
13.
Chem Biol Drug Des ; 96(6): 1372-1379, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32542979

RESUMEN

Staphylococcus aureus and Staphylococcus epidermidis are the main agents involved with implant-related infections. Their ability to adhere to medical devices with subsequent biofilm formation is crucial to the development of these infections. Herein, we described the antibacterial and antibiofilm activities of a quinazoline-based compound, N4 -benzyl-N2 -phenylquinazoline-2,4-diamine, against both biofilm-forming pathogens. The minimum inhibitory concentrations (MIC) were determined as 25 µM for S. aureus and 15 µM for S. epidermidis. At sub-MIC concentrations (20 µM for S. aureus and 10 µM for S. epidermidis), the compound was able to inhibit biofilm formation without interfere with bacterial growth, confirmed by scanning electron microscopy. Moreover, surfaces coated with the quinazoline-based compound were able to prevent bacterial adherence. In addition, this compound presented no toxicity to human red blood cells at highest MIC 25 µM and in vivo toxicity assay using Galleria mellonella larvae resulted in 82% survival with a high dose of 500 mg/kg body weight. These features evidence quinazoline-based compound as interesting entities to promising applications in biomedical fields, such as antimicrobial and in anti-infective approaches.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Quinazolinas/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana
14.
Microb Pathog ; 140: 103967, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31911193

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a major public health concern representing about 60% of S. aureus isolated from hospitalized patients in countries such as USA and Brazil in the last years. Additionally, the ability to adhere to surfaces and the development of biofilms are important properties of pathogenic bacteria involved in medical device-associated infections, and staphylococci are recognized as the major etiologic agents in these situations. The aim of this study is to evaluate three Brosimum acutifolium flavonoids, 4'-hydroxy-7,8(2″,2″-dimethylpyran)flavan (1), brosimine b (2) and 4-hydroxy-lonchocarpin (3), regarding their antibiofilm, antibacterial and antioxidant activities. Flavonoids 1 and 2 were able to reduce S. aureus viability within preformed biofilms in 73% at 50 µM while 2 also reduced biofilm biomass in 48% at 100 µM. Flavonoid 3 was not able to reduce biofilm biomass at assessed concentrations. When tested against methicillin-resistant S. aureus (MRSA) strains, 2 (100 µM) reduced 70%-98% of viable bacteria within 24h-old biofilms. The minimum inhibitory concentration against the methicillin-sensitive Staphylococcus aureus ATCC 25904 was 50 µM for the three compounds. In preliminary assays to evaluate cytotoxicity, 1 was highly hemolytic at concentrations above 50 µM while 2 and 3 did not cause significant hemolysis at 100 µM. The antioxidant activity was observed only in the ethanolic extract and 2. In vivo toxicity evaluations using Galleria mellonella larvae as alternative host model resulted in 83.3% survival for treatment with 1, 76.7% for 2, and 100% for 3 at 500 mg/kg. This study highlights the potential of these flavonoids, especially 2, as antibiofilm agent to control preformed S. aureus biofilms.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Flavonoides/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Antibacterianos/química , Flavonoides/química , Humanos , Staphylococcus aureus Resistente a Meticilina/fisiología , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
15.
J Nanosci Nanotechnol ; 20(3): 1486-1494, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31492311

RESUMEN

Galleria mellonella larvae is an invertebrate that has been extensively used as experimental model in the investigation of microbial virulence and efficacy of antimicrobial agents and can be used to provide faster and cheaper data than traditional test systems. Our objective was to propose the use of G. mellonella larvae as an In Vivo model to evaluate the toxicity of lipid-core nanocapsule (LNC) formulations having different surface coatings. Blank LNC formulations were coated with polysorbate 80 (LNC-1), lecithin and polysorbate 80 (LNC-2), and lecithin, chitosan and polysorbate 80 (LNC-3). Subsequently, the formulations were systemically administered to G. mellonella larvae at doses of 3.75×10-14, 3.75×10-13, 3.75×10-12, 3.75×10-11 and 3.75×10-10 mols of LNC per kg of larvae. The results demonstrated that those nanocapsules having neutral (LNC-1), negative (LNC-2) or positive (LNC-3) surface did not show acute toxicity effects in G. mellonella larvae. G. mellonella larvae is a viable and promising alternative for In Vivo nanotoxicological studies. We conclude that G. mellonella larvae can be used as an alternative model for the screening of the toxicity of polymeric nanocapsules functionalized with (i) polysorbate 80, (ii) lecithin and polysorbate 80, and (iii) lecithin, chitosan and polysorbate 80. Future studies can be now developed in order to evaluate their toxicity when loaded or functionalized with drugs.


Asunto(s)
Quitosano , Nanocápsulas , Animales , Quitosano/toxicidad , Composición de Medicamentos , Larva , Lípidos , Nanocápsulas/toxicidad
16.
Microb Pathog ; 137: 103756, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31546000

RESUMEN

In vivo studies are crucial decision-maker step in order to translate in vitro data to an applied therapy. Considering this we describe a simple method that analyzes and quantifies biofilm formation inside the Galleria mellonella larvae. Toothbrush bristles were employed as an abiotic surface to mimic a medical device. A standardized inoculum of Staphylococcus aureus was systemically injected in the larvae together with the insertion of a bristle in the last proleg pair. After incubation adhered cells were detached from bristles and quantified by colony-forming units (CFU) counting using staphylococci-selective medium. About 3 × 106 CFU of S. aureus were recovered from bristles and scanning electron microscopy (SEM) images confirmed biofilm formation. Control group did not show adherent bacteria, as demonstrated by absence of CFU counting and SEM images, indicating that the insertion procedure is free of bacterial contamination. We present a feasible method to evaluate bacterial biofilm formation in vivo that in the near future can be used to evaluate antibiofilm compounds.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Larva/microbiología , Mariposas Nocturnas/microbiología , Infecciones Estafilocócicas/microbiología , Animales , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Staphylococcus aureus/patogenicidad
17.
Pathogens ; 8(2)2019 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-31014001

RESUMEN

Enterobacter cloacae complex has been increasingly recognized as a nosocomial pathogen representing the third major Enterobacteriaceae species involved with infections. This study aims to evaluate virulence and antimicrobial susceptibility of subpopulations generated from macrocolonies of NDM-1 producing Enterobacter hormaechei clinical isolates. Biofilm was quantified using crystal violet method and fimbrial genes were investigated by PCR. Susceptibility of antimicrobials, alone and combined, was determined by minimum inhibitory concentration and checkerboard assays, respectively. Virulence and efficacy of antimicrobials were evaluated in Galleria mellonella larvae. Importantly, we verified that some subpopulations that originate from the same macrocolony present different biofilm production ability and distinct susceptibility to meropenem due to the loss of blaNDM-1 encoding plasmid. A more in-depth study was performed with the 798 macrocolony subpopulations. Type 3 fimbriae were straightly related with biofilm production; however, virulence in larvae was not statistically different among subpopulations. Triple combination with meropenem-rifampicin-polymyxin B showed in vitro synergistic effect against all subpopulations; while in vivo this treatment showed different efficacy rates for 798-1S and 798-4S subpopulations. The ability of multidrug resistant E. hormaechei isolates in generating bacterial subpopulations presenting different susceptible and virulence mechanisms are worrisome and may explain why these infections are hardly overcome.

18.
Parasitol Res ; 118(2): 607-615, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30535524

RESUMEN

Trichomoniasis is the most common non-viral sexually transmitted disease worldwide and can lead to serious consequences in reproductive health, cancer, and HIV acquisition. The current approved treatment present adverse effects and drug resistance data on this neglected parasitic infection is underestimated. Chalcones are a family of molecules that present biological applications, such as activity against many pathogenic organisms including protozoan pathogens. Chalcone (1) and three amino-analogues (2-4) were synthesized by Claisen-Schmidt condensation reaction and had their activity evaluated against the parasitic protozoan Trichomonas vaginalis. This bioassay indicated the presence and position of the amino group on ring A was crucial for anti-T. vaginalis activity. Among these, 3'-aminochalcone (3) presented the most potent effect and showed high cytotoxicity against human vaginal cells. On the other hand, 3 was not able to exhibit toxicity against Galleria mellonella larvae, as well as the hemolytic effect on human erythrocytes. Trophozoites of T. vaginalis were treated with 3, and did not present significant reactive oxygen species (ROS) accumulation, but induced a significantly higher ROS accumulation in human neutrophils after co-incubation. T. vaginalis pyruvate:ferredoxin oxidoreductase (PFOR) and ß-tubulin gene expression was not affected by 3.


Asunto(s)
Antiprotozoarios/farmacología , Chalconas/farmacología , Enfermedades de Transmisión Sexual/tratamiento farmacológico , Tricomoniasis/tratamiento farmacológico , Trichomonas vaginalis/efectos de los fármacos , Animales , Antiprotozoarios/síntesis química , Chalconas/síntesis química , Resistencia a Medicamentos , Femenino , Humanos , Pruebas de Sensibilidad Parasitaria , Enfermedades de Transmisión Sexual/parasitología , Tricomoniasis/parasitología , Trofozoítos/efectos de los fármacos
19.
FEMS Yeast Res ; 18(7)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30052907

RESUMEN

Candida haemulonii complex has emerged as notorious yeasts causing invasive infections with high rates of treatment failures. Since there is a particular interest in the development of non-mammalian host models to study microbial virulence, with the aim to evade the ethical impact of animal tests, herein we compared the virulence of C. haemulonii, C. duobushaemulonii and C. haemulonii var. vulnera with non-albicans Candida species (C. tropicalis, C. krusei and C. lusitaniae) on Galleria mellonella and the efficacy of antifungal drugs. All these fungi induced a dose-dependent effect on larvae killing, a decrease in hemocyte density and fungi were phagocytozed by hemocytes in equal proportions. Fungal inoculation caused early larvae melanization after some minutes of injection, followed by an augmented pigmentation after 24 h. Differences among species virulence can be explained, in part, by differences in growth rate and production of hydrolytic enzymes. First-line antifungals were tested with equivalent therapeutic doses and MIC profile in vitro was correlated with in vivo antifungal efficacy. Additionally, fungal burden increased in infected larvae along time and only caspofungin reduced the number of CFUs of C. haemulonii species complex. So, G. mellonella offers a simple and feasible model to study C. haemulonii complex virulence and drug efficacy.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/patogenicidad , Candidiasis/microbiología , Lepidópteros/microbiología , Animales , Antifúngicos/uso terapéutico , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida/clasificación , Candida/fisiología , Candidiasis/tratamiento farmacológico , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Larva/inmunología , Larva/microbiología , Lepidópteros/inmunología , Pruebas de Sensibilidad Microbiana , Análisis de Supervivencia , Virulencia
20.
Food Res Int ; 111: 661-673, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30007730

RESUMEN

Propolis, a resin produced by bees, is widely used in industrial products, including food, cosmetics, supplements, and pharmaceuticals. Extracts (ethanolic and hydroethanolic) and fractions, yielded by accelerated solvent extraction methodology, were obtained from different samples of Brazilian brown propolis (BBP). They were evaluated for antioxidant capacity, antibacterial, antibiofilm, and anti-Trichomonas vaginalis activities. The metabolomics profiling was determined by LC-DAD-MS and an innovative application of statistical analyses (univariate and chemometrics) was applied to correlate chemical compounds with biological activities. Eighty-six compounds were identified, including phenylpropanoic acids, flavonoids, chlorogenic acids, and prenylated phenylpropanoic acids. Propolis-fractions killed about 93% of Staphylococcus aureus in biofilm (at concentration of 125 µg/mL), showed activity against T. vaginalis with MIC at 400 µg/mL and significative antioxidant capacity (IC50 2.32-3.80 µg/mL). Propolis extracts and fractions did not show antibacterial and antibiofilm activities against Pseudomonas aeruginosa. The prenylated phenylpropanoic acids positively correlated with both the antibiofilm (S. aureus) and anti-T. vaginalis activities, such as the metabolites artepillin C, drupanin, and baccharin.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Própolis/química , Staphylococcus aureus/efectos de los fármacos , Trichomonas vaginalis/efectos de los fármacos , Animales , Antioxidantes/análisis , Abejas , Brasil , Cromatografía Líquida de Alta Presión/métodos , Cinamatos/farmacología , Suplementos Dietéticos , Flavonoides , Metabolómica , Pruebas de Sensibilidad Microbiana , Fenilpropionatos/farmacología , Própolis/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Tricotecenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...