Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 194: 110704, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36731392

RESUMEN

Core-collapse Supernovae (SNe) are one of the most energetic events in the Universe, during which almost all the star's binding energy is released in the form of neutrinos. These particles are direct probes of the processes occurring in the stellar core and provide unique insights into the gravitational collapse. RES-NOVA will revolutionize how we detect neutrinos from astrophysical sources, by deploying the first ton-scale array of cryogenic detectors made from archaeological lead. Pb offers the highest neutrino interaction cross-section via coherent elastic neutrino-nucleus scattering (CEνNS). Such process will enable RES-NOVA to be equally sensitive to all neutrino flavours. For the first time, we propose the use archaeological Pb as sensitive target material in order to achieve an ultra-low background level in the region of interest (O(1 keV)). All these features make possible the deployment of the first cm-scale neutrino telescope for the investigation of astrophysical sources. In this contribution, we will characterize the radiopurity level and the performance of a small-scale proof-of-principle detector of RES-NOVA, consisting in a PbWO4 crystal made from archaeological-Pb operated as cryogenic detector.

2.
Phys Rev Lett ; 129(23): 232502, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563213

RESUMEN

Neutrinoless double beta decay (0νßß) processes sample a wide range of intermediate forbidden nuclear transitions, which may be impacted by quenching of the axial vector coupling constant (g_{A}/g_{V}), the uncertainty of which plays a pivotal role in determining the sensitivity reach of 0νßß experiments. In this Letter, we present measurements performed on a high-resolution LiInSe_{2} bolometer in a "source=detector" configuration to measure the spectral shape of the fourfold forbidden ß decay of ^{115}In. The value of g_{A}/g_{V} is determined by comparing the spectral shape of theoretical predictions to the experimental ß spectrum taking into account various simulated background components as well as a variety of detector effects. We find evidence of quenching of g_{A}/g_{V} at >5σ with a model-dependent quenching factor of 0.655±0.002 as compared to the free-nucleon value for the interacting shell model. We also measured the ^{115}In half-life to be [5.18±0.06(stat)_{-0.015}^{+0.005}(sys)]×10^{14} yr within the interacting shell model framework. This Letter demonstrates the power of the bolometeric technique to perform precision nuclear physics single-ß decay measurements, which along with improved nuclear modeling can help reduce the uncertainties in the calculation of several decay nuclear matrix elements including those used in 0νßß sensitivity calculations.

3.
Phys Rev Lett ; 95(18): 182302, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16383896

RESUMEN

The NEMO 3 detector, which has been operating in the Fréjus underground laboratory since February 2003, is devoted to the search for neutrinoless double-beta decay (beta beta 0v). The half-lives of the two neutrino double-beta decay (beta beta 2v) have been measured for 100Mo and 82Se. After 389 effective days of data collection from February 2003 until September 2004 (phase I), no evidence for neutrinoless double-beta decay was found from approximately 7 kg of 100Mo and approximately 1 kg of 82Se. The corresponding limits are T1/2(beta beta0v) > 4.6 x 10(23) yr for 100Mo and T1/2(beta beta 0v) > 1.0 x 10(23) yr for 82Se (90% C.L.). Depending on the nuclear matrix element calculation, the limits for the effective Majorana neutrino mass are < 0.7-2.8 e/v for 100Mo and < 1.7-4.9 eV for 82Se.

4.
Phys Rev Lett ; 89(18): 183201, 2002 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-12398596

RESUMEN

We report the stopping power of molecular hydrogen for antiprotons of kinetic energy above the maximum (approximately 100 keV) with the purpose of comparing with the proton one. Our result is consistent with a positive difference in antiproton-proton stopping powers above approximately 250 keV and with a maximum difference between the stopping powers of 21%+/-3% at around 600 keV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...