RESUMEN
Shiga-toxin producing Escherichia coli (STEC) infections can cause from bloody diarrhea to Hemolytic Uremic Syndrome. The STEC intestinal infection triggers an inflammatory response that can facilitate the development of a systemic disease. We report here that neutrophils might contribute to this inflammatory response by secreting Interleukin 1 beta (IL-1ß). STEC stimulated neutrophils to release elevated levels of IL-1ß through a mechanism that involved the activation of caspase-1 driven by the NLRP3-inflammasome and neutrophil serine proteases (NSPs). Noteworthy, IL-1ß secretion was higher at lower multiplicities of infection. This secretory profile modulated by the bacteria:neutrophil ratio, was the consequence of a regulatory mechanism that reduced IL-1ß secretion the higher were the levels of activation of both caspase-1 and NSPs, and the production of NADPH oxidase-dependent reactive oxygen species. Finally, we also found that inhibition of NSPs significantly reduced STEC-triggered IL-1ß secretion without modulating the ability of neutrophils to kill the bacteria, suggesting NSPs might represent pharmacological targets to be evaluated to limit the STEC-induced intestinal inflammation.
Asunto(s)
Infecciones por Escherichia coli , Escherichia coli O157 , Síndrome Hemolítico-Urémico , Interleucina-1beta , Escherichia coli Shiga-Toxigénica , Humanos , Caspasas , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Síndrome Hemolítico-Urémico/metabolismo , Síndrome Hemolítico-Urémico/microbiología , Neutrófilos , Interleucina-1beta/metabolismoRESUMEN
Neutrophils release web like-structures known as neutrophil extracellular traps (NETs) that ensnare and kill microorganisms. These networks are constituted of a DNA scaffold with associated antimicrobial proteins, which are released to the extracellular space as an effective mechanism to fight against invading microorganisms. In parallel with this beneficial role to avoid microbial dissemination and wall off infections, accumulating evidence supports that under certain circumstances, NETs can exert deleterious effects in inflammatory, autoimmune, and thrombotic pathologies. Research on NET properties and their role in pathophysiological processes is a rapidly evolving and expanding field. Here, we describe a combination of methods to achieve a successful in vitro NET visualization, semiquantification, and isolation.
Asunto(s)
Separación Celular/métodos , ADN/análisis , Trampas Extracelulares/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Elastasa Pancreática/análisis , Peroxidasa/metabolismo , Humanos , Técnicas In VitroRESUMEN
Neutrophils infected with Mycobacterium tuberculosis (Mtb) predominate in tuberculosis patients' lungs. Neutrophils phagocytose the pathogen, but the mechanism of pathogen elimination is controversial. Macroautophagy/autophagy, a crucial mechanism for several neutrophil functions, can be modulated by immunological mediators. The costimulatory molecule SLAMF1 can act as a microbial sensor in macrophages being also able to interact with autophagy-related proteins. Here, we demonstrate for the first time that human neutrophils express SLAMF1 upon Mtb-stimulation. Furthermore, SLAMF1 was found colocalizing with LC3B+ vesicles, and activation of SLAMF1 increased neutrophil autophagy induced by Mtb. Finally, tuberculosis patients' neutrophils displayed reduced levels of SLAMF1 and lower levels of autophagy against Mtb as compared to healthy controls. Altogether, these results indicate that SLAMF1 participates in neutrophil autophagy during active tuberculosis.Abbreviations: AFB: acid-fast bacilli; BafA1: bafilomycin A1; CLL: chronic lymphocytic leukemia; DPI: diphenyleneiodonium; EVs: extracellular vesicles; FBS: fetal bovine serum; HD: healthy donors; HR: high responder (tuberculosis patient); IFNG: interferon gamma; IL1B: interleukin 1 beta; IL17A: interleukin 17A; IL8: interleukin 8; LR: low responder (tuberculosis patient); mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK14/p38: mitogen-activated protein kinase 14; Mtb: Mycobacterium tuberculosis; Mtb-Ag: Mycobacterium tuberculosis, Strain H37Rv, whole cell lysate; NETs: neutrophils extracellular traps; PPD: purified protein derivative; ROS: reactive oxygen species; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; SLAMF1: signaling lymphocytic activation molecule family member 1; TB: tuberculosis; TLR: toll like receptor.
Asunto(s)
Autofagia , Neutrófilos , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Tuberculosis , Humanos , Macrófagos/metabolismo , Mycobacterium tuberculosis , Neutrófilos/citología , Neutrófilos/microbiología , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Tuberculosis/microbiologíaRESUMEN
Enterohemorrhagic Escherichia coli (EHEC) strains are food-borne pathogens that can cause different clinical conditions. Shiga toxin 2a and/or 2c (Stx2)-producing E. coli O157:H7 is the serotype most frequently associated with severe human disease. In this work we analyzed the hypothesis that host cells participate in Stx2 production, cell damage, and inflammation during EHEC infection. With this aim, macrophage-differentiated THP-1 cells and the intestinal epithelial cell line HCT-8 were incubated with E. coli O157:H7. A time course analysis of cellular and bacterial survival, Stx2 production, stx2 transcription, and cytokine secretion were analyzed in both human cell lines. We demonstrated that macrophages are able to internalize and kill EHEC. Simultaneously, Stx2 produced by internalized bacteria played a major role in macrophage death. In contrast, HCT-8 cells were completely resistant to EHEC infection. Besides, macrophages and HCT-8 infected cells produce IL-1ß and IL-8 inflammatory cytokines, respectively. At the same time, bacterial stx2-specific transcripts were detected only in macrophages after EHEC infection. The interplay between bacteria and host cells led to Stx production, triggering of inflammatory response and cell damage, all of which could contribute to a severe outcome after EHEC infections.
Asunto(s)
Escherichia coli O157 , Interacciones Microbiota-Huesped , Inmunomodulación/fisiología , Toxinas Shiga/toxicidad , Línea Celular , Citocinas , Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli , Humanos , Inflamación , MacrófagosRESUMEN
γδ T cells are non-conventional, innate-like T cells, characterized by a restricted T-cell receptor repertoire. They participate in protective immunity responses against extracellular and intracellular pathogens, tumour surveillance, modulation of innate and adaptive immune responses, tissue healing, epithelial cell maintenance and regulation of physiological organ function. In this study, we investigated the role of neutrophils during the activation of human blood γδ T cells through CD3 molecules. We found that the up-regulation of CD69 expression, and the production of interferon-γ and tumour necrosis factor-α induced by anti-CD3 antibodies was potentiated by neutrophils. We found that inhibition of caspase-1 and neutralization of interleukin-18 did not affect neutrophil-mediated modulation. By contrast, the treatment with serine protease inhibitors prevented the potentiation of γδ T-cell activation induced by neutrophils. Moreover, the addition of elastase to γδ T-cell culture increased their stimulation, and the treatment of neutrophils with elastase inhibitor prevented the effect of neutrophils on γδ T-cell activation. Furthermore, we demonstrated that the effect of elastase on γδ T cells was mediated through the protease-activated receptor, PAR1, because the inhibition of this receptor with a specific antagonist, RWJ56110, abrogated the effect of neutrophils on γδ T-cell activation.
Asunto(s)
Elastasa de Leucocito/inmunología , Activación de Linfocitos , Activación Neutrófila/inmunología , Neutrófilos/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/inmunología , Complejo CD3/inmunología , Humanos , Interferón gamma/inmunología , Lectinas Tipo C/inmunología , Neutrófilos/citología , Receptor PAR-1/inmunología , Linfocitos T/citología , Factor de Necrosis Tumoral alfa/inmunologíaRESUMEN
PURPOSE: To evaluate the role of nuclear factor-κB (NF-κB) activation in eye drop preservative toxicity and the effect of topical NF-κB inhibitors on preservative-facilitated allergic conjunctivitis. METHODS: Balb/c mice were instilled ovalbumin (OVA) combined with benzalkonium chloride (BAK) and/or NF-κB inhibitors in both eyes. After immunization, T-cell responses and antigen-induced ocular inflammation were evaluated. Nuclear factor-κB activation and associated inflammatory changes also were assessed in murine eyes and in an epithelial cell line after BAK exposure. RESULTS: Benzalkonium chloride promoted allergic inflammation and leukocyte infiltration of the conjunctiva. Topical NF-κB inhibitors blocked the disruptive effect of BAK on conjunctival immunological tolerance and ameliorated subsequent ocular allergic reactions. In line with these findings, BAK induced NF-κB activation and the secretion of IL-6 and granulocyte-monocyte colony-stimulating factor in an epithelial cell line and in the conjunctiva of instilled mice. In addition, BAK favored major histocompatibility complex (MHC) II expression in cultured epithelial cells in an NF-κB-dependent fashion after interaction with T cells. CONCLUSIONS: Benzalkonium chloride triggers conjunctival epithelial NF-κB activation, which seems to mediate some of its immune side effects, such as proinflammatory cytokine release and increased MHC II expression. Breakdown of conjunctival tolerance by BAK favors allergic inflammation, and this effect can be prevented in mice by topical NF-κB inhibitors. These results suggest a new pharmacological target for preservative toxicity and highlight the importance of conjunctival tolerance in ocular surface homeostasis.
Asunto(s)
Compuestos de Benzalconio/toxicidad , Conjuntiva/inmunología , Conjuntivitis Alérgica/prevención & control , Proteínas I-kappa B/farmacología , Tolerancia Inmunológica/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Conservadores Farmacéuticos/toxicidad , Administración Tópica , Animales , Western Blotting , Línea Celular , Técnicas de Cocultivo , Conjuntiva/citología , Conjuntivitis Alérgica/inducido químicamente , Conjuntivitis Alérgica/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/inmunología , Femenino , Citometría de Flujo , Hipersensibilidad Tardía/inmunología , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos BALB C , Microscopía Confocal , Inhibidor NF-kappaB alfa , FN-kappa B/metabolismo , Ovalbúmina/toxicidad , Linfocitos T/inmunologíaRESUMEN
Neutrophils not only play a critical role as a first line of defense against bacteria and fungi infections but also contribute to tissue injury associated with autoimmune and inflammatory diseases. Neutrophils are rapidly and massively recruited from the circulation into injured tissues displaying an impressive arsenal of toxic weapons. Although effective in their ability to kill pathogens, these weapons were equally effective to induce tissue damage. Therefore, the inflammatory activity of neutrophils must be regulated with exquisite precision and timing, a task mainly achieved through a complex network of mechanisms, which regulate neutrophil survival. Neutrophils have the shortest lifespan among leukocytes and usually die via apoptosis although new forms of cell death have been characterized over the last few years. The lifespan of neutrophils can be dramatically modulated by a large variety of agents such as cytokines, pathogens, danger-associated molecular patterns as well as by pharmacological manipulation. Recent findings shed light about the complex mechanisms responsible for the regulation of neutrophil survival in different physiological, pathological, and pharmacological scenarios. Here, we provide an updated review on the current knowledge and new findings in this field and discuss novel strategies that could be used to drive the resolution of neutrophil-mediated inflammatory diseases.
Asunto(s)
Apoptosis/fisiología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Caspasas/metabolismo , Supervivencia Celular/fisiología , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptores de Muerte Celular/metabolismo , Transducción de SeñalRESUMEN
The development of acidic environments is a hallmark of inflammatory processes of different etiology. We have previously shown that transient exposure to acidic conditions, similar to those encountered in vivo, induces the activation of neutrophils and the phenotypic maturation of dendritic cells. We here report that extracellular acidosis (pH 6.5) selectively stimulates the production and the secretion of IL-1ß by human monocytes without affecting the production of TNF-α, IL-6 and the expression of CD40, CD80, CD86, and HLA-DR. Stimulation of IL-1ß production by pH 6.5-treated monocytes was shown to be dependent on caspase-1 activity, and it was also observed using peripheral blood mononuclear cells instead of isolated monocytes. Contrasting with the results in monocytes, we found that pH 6.5 did not stimulate any production of IL-1ß by macrophages. Changes in intracellular pH seem to be involved in the stimulation of IL-1ß production. In fact, monocytes cultured at pH 6.5 undergo a fall in the values of intracellular pH while the inhibitor of the Na+/H+ exchanger, 5-(N-ethyl-N-isopropyl)amiloride induced both, a decrease in the values of intracellular pH and the stimulation of IL-1ß production. Real time quantitative PCR assays indicated that monocytes cultured either at pH 6.5 or in the presence of 5-(N-ethyl-N-isopropyl)amiloride expressed higher levels of pro-IL-1ß mRNA suggesting that low values of intracellular pH enhance the production of IL-1ß, at least in part, by stimulating the synthesis of its precursor.
Asunto(s)
Espacio Extracelular/metabolismo , Interleucina-1beta/biosíntesis , Monocitos/metabolismo , Calcio/metabolismo , Caspasa 1/metabolismo , Supervivencia Celular , Citosol/metabolismo , Regulación de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Espacio Intracelular/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Monocitos/citología , Monocitos/enzimología , FenotipoRESUMEN
Dendritic cells (DCs) are the most efficient antigen-presenting cells. They are activated in the periphery by conserved pathogen molecules and by inflammatory mediators produced by a variety of cell types in response to danger signals. It is widely appreciated that inflammatory responses in peripheral tissues are usually associated with the development of acidic microenvironments. Surprisingly, there are relatively few studies directed to analyze the effect of extracellular acidosis on the immune response. We focus on the influence of extracellular acidosis on the function of immature DCs. The results presented here show that acidosis activates DCs. It increases the acquisition of extracellular antigens for MHC class I-restricted presentation and the ability of antigen-pulsed DCs to induce both specific CD8+ CTL and B-cell responses. These findings may have important implications to our understanding of the mechanisms through which DCs sense the presence of infection or inflammation in nonlymphoid tissues.