Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 8(4): e0000623, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37350611

RESUMEN

Next-generation sequencing technologies have enabled many advances across diverse areas of biology, with many benefiting from increased sample size. Although the cost of running next-generation sequencing instruments has dropped substantially over time, the cost of sample preparation methods has lagged behind. To counter this, researchers have adapted library miniaturization protocols and large sample pools to maximize the number of samples that can be prepared by a certain amount of reagents and sequenced in a single run. However, due to high variability of sample quality, over and underrepresentation of samples in a sequencing run has become a major issue in high-throughput sequencing. This leads to misinterpretation of results due to increased noise, and additional time and cost rerunning underrepresented samples. To overcome this problem, we present a normalization method that uses shallow iSeq sequencing to accurately inform pooling volumes based on read distribution. This method is superior to the widely used fluorometry methods, which cannot specifically target adapter-ligated molecules that contribute to sequencing output. Our normalization method not only quantifies adapter-ligated molecules but also allows normalization of feature space; for example, we can normalize to reads of interest such as non-ribosomal reads. As a result, this normalization method improves the efficiency of high-throughput next-generation sequencing by reducing noise and producing higher average reads per sample with more even sequencing depth. IMPORTANCE High-throughput next generation sequencing (NGS) has significantly contributed to the field of genomics; however, further improvements can maximize the potential of this important tool. Uneven sequencing of samples in a multiplexed run is a common issue that leads to unexpected extra costs or low-quality data. To mitigate this problem, we introduce a normalization method based on read counts rather than library concentration. This method allows for an even distribution of features of interest across samples, improving the statistical power of data sets and preventing the financial loss associated with resequencing libraries. This method optimizes NGS, which already has huge importance across many areas of biology.


Asunto(s)
Genómica , Programas Informáticos , Genómica/métodos , Análisis de Secuencia de ADN , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento
2.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38187556

RESUMEN

Bacteroides fragilis is a Gram-negative commensal bacterium commonly found in the human colon that differentiates into two genomospecies termed division I and II. We leverage a comprehensive collection of 694 B. fragilis whole genome sequences and report differential gene abundance to further support the recent proposal that divisions I and II represent separate species. In division I strains, we identify an increased abundance of genes related to complex carbohydrate degradation, colonization, and host niche occupancy, confirming the role of division I strains as gut commensals. In contrast, division II strains display an increased prevalence of plant cell wall degradation genes and exhibit a distinct geographic distribution, primarily originating from Asian countries, suggesting dietary influences. Notably, division II strains have an increased abundance of genes linked to virulence, survival in toxic conditions, and antimicrobial resistance, consistent with a higher incidence of these strains in bloodstream infections. This study provides new evidence supporting a recent proposal for classifying divisions I and II B. fragilis strains as distinct species, and our comparative genomic analysis reveals their niche-specific roles.

3.
Nature ; 609(7925): 101-108, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35798029

RESUMEN

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing and/or sequencing capacity, which can also introduce biases1-3. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing4,5. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We developed and deployed improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detected emerging variants of concern up to 14 days earlier in wastewater samples, and identified multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Monitoreo Epidemiológico Basado en Aguas Residuales , Aguas Residuales , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Humanos , ARN Viral/análisis , ARN Viral/genética , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Análisis de Secuencia de ARN , Aguas Residuales/virología
4.
medRxiv ; 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35411350

RESUMEN

As SARS-CoV-2 continues to spread and evolve, detecting emerging variants early is critical for public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, especially in areas with limited resources, participation, or testing/sequencing capacity, which can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks regional infection dynamics and provides less biased abundance estimates than clinical testing. Tracking virus genomic sequences in wastewater would improve community prevalence estimates and detect emerging variants. However, two factors limit wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day wastewater and clinical sequencing effort, in the controlled environment of a large university campus and the broader context of the surrounding county. We develop and deploy improved virus concentration protocols and deconvolution software that fully resolve multiple virus strains from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater samples, and identify multiple instances of virus spread not captured by clinical genomic surveillance. Our study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...