Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 375(6585): 1177-1182, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35201898

RESUMEN

Angiotensin-converting enzyme (ACE) regulates blood pressure by cleaving angiotensin I to produce angiotensin II. In the brain, ACE is especially abundant in striatal tissue, but the function of ACE in striatal circuits remains poorly understood. We found that ACE degrades an unconventional enkephalin heptapeptide, Met-enkephalin-Arg-Phe, in the nucleus accumbens of mice. ACE inhibition enhanced µ-opioid receptor activation by Met-enkephalin-Arg-Phe, causing a cell type-specific long-term depression of glutamate release onto medium spiny projection neurons expressing the Drd1 dopamine receptor. Systemic ACE inhibition was not intrinsically rewarding, but it led to a decrease in conditioned place preference caused by fentanyl administration and an enhancement of reciprocal social interaction. Our results raise the enticing prospect that central ACE inhibition can boost endogenous opioid signaling for clinical benefit while mitigating the risk of addiction.


Asunto(s)
Encefalina Metionina/análogos & derivados , Plasticidad Neuronal , Núcleo Accumbens/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Captopril/farmacología , Encefalina Metionina/metabolismo , Femenino , Fentanilo/farmacología , Masculino , Ratones , Potenciales Postsinápticos Miniatura , Péptidos Opioides/metabolismo , Técnicas de Placa-Clamp
2.
Biol Psychiatry ; 86(11): 836-847, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31471038

RESUMEN

BACKGROUND: The nucleus accumbens (NAc) controls multiple facets of impulsivity but is a heterogeneous brain region with diverse microcircuitry. Prior literature links impulsive behavior in rodents to gamma-aminobutyric acid signaling in the NAc. Here, we studied the regulation of impulsive behavior by fast-spiking interneurons (FSIs), a strong source of gamma-aminobutyric acid-mediated synaptic inhibition in the NAc. METHODS: Male and female transgenic mice expressing Cre recombinase in FSIs allowed us to identify these sparsely distributed cells in the NAc. We used a 5-choice serial reaction time task to measure both impulsive action and sustained attention. During the 5-choice serial reaction time task, we monitored FSI activity with fiber photometry calcium imaging and manipulated FSI activity with chemogenetic and optogenetic methodology. We used electrophysiology, optogenetics, and fluorescent in situ hybridization to confirm these methods were robust and specific to FSIs. RESULTS: In mice performing the 5-choice serial reaction time task, NAc FSIs showed sustained activity on trials ending with correct responses, but FSI activity declined over time on trials ending with premature responses. The number of premature responses increased significantly after sustained chemogenetic inhibition or temporally delimited optogenetic inhibition of NAc FSIs, without any changes in response latencies or general locomotor activity. CONCLUSIONS: These experiments provide strong evidence that NAc FSIs constrain impulsive actions, most likely through gamma-aminobutyric acid-mediated synaptic inhibition of medium spiny projection neurons. Our findings may provide insight into the pathophysiology of disorders associated with impulsivity and may inform the development of circuit-based therapeutic interventions.


Asunto(s)
Potenciales de Acción , Conducta Impulsiva , Interneuronas/fisiología , Inhibición Neural , Núcleo Accumbens/fisiología , Animales , Femenino , Hibridación Fluorescente in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética , Parvalbúminas/metabolismo , Tiempo de Reacción , Ácido gamma-Aminobutírico/administración & dosificación
3.
Learn Mem ; 24(11): 569-579, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29038218

RESUMEN

Humans routinely use past experience with complexity to deal with novel, challenging circumstances. This fundamental aspect of real-world behavior has received surprisingly little attention in animal studies, and the underlying brain mechanisms are unknown. The present experiments tested for transfer from past experience in rats and then used quantitative imaging to localize synaptic modifications in hippocampus. Six daily exposures to an enriched environment (EE) caused a marked enhancement of short- and long-term memory encoded during a 30-min session in a different and complex environment relative to rats given extensive handling or access to running wheels. Relatedly, the EE animals investigated the novel environment in a different manner than the other groups, suggesting transfer of exploration strategies acquired in earlier interactions with complexity. This effect was not associated with changes in the number or size of excitatory synapses in hippocampus. Maps of synapses expressing a marker for long-term potentiation indicated that encoding in the EE group, relative to control animals, was concentrated in hippocampal field CA1. Importantly, <1% of the total population of synapses was involved in production of the regional map. These results constitute the first evidence that the transfer of experience profoundly affects the manner in which hippocampus encodes complex information.


Asunto(s)
Ambiente , Hipocampo/fisiología , Transferencia de Experiencia en Psicología/fisiología , Factores Despolimerizantes de la Actina/metabolismo , Análisis de Varianza , Animales , Homólogo 4 de la Proteína Discs Large/metabolismo , Conducta Exploratoria/fisiología , Hipocampo/citología , Potenciación a Largo Plazo/fisiología , Masculino , Memoria a Largo Plazo/fisiología , Memoria a Corto Plazo/fisiología , Ratas , Ratas Long-Evans , Sinapsis/metabolismo , Sinapsis/ultraestructura
4.
Learn Mem ; 24(5): 199-209, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28416631

RESUMEN

Recent human exome-sequencing studies have implicated polymorphic Brg1-associated factor (BAF) complexes (mammalian SWI/SNF chromatin remodeling complexes) in several intellectual disabilities and cognitive disorders, including autism. However, it remains unclear how mutations in BAF complexes result in impaired cognitive function. Post-mitotic neurons express a neuron-specific assembly, nBAF, characterized by the neuron-specific subunit BAF53b. Subdomain 2 of BAF53b is essential for the differentiation of neuronal precursor cells into neurons. We generated transgenic mice lacking subdomain 2 of Baf53b (BAF53bΔSB2). Long-term synaptic potentiation (LTP) and long-term memory, both of which are associated with phosphorylation of the actin severing protein cofilin, were assessed in these animals. A phosphorylation mimic of cofilin was stereotaxically delivered into the hippocampus of BAF53bΔSB2 mice in an effort to rescue LTP and memory. BAF53bΔSB2 mutant mice show impairments in phosphorylation of synaptic cofilin, LTP, and memory. Both the synaptic plasticity and memory deficits are rescued by overexpression of a phosphorylation mimetic of cofilin. Baseline physiology and behavior were not affected by the mutation or the experimental treatment. This study suggests a potential link between nBAF function, actin cytoskeletal remodeling at the dendritic spine, and memory formation. This work shows that a targeted manipulation of synaptic function can rescue adult plasticity and memory deficits caused by manipulations of nBAF, and thereby provides potential novel avenues for therapeutic development for multiple intellectual disability disorders.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Memoria/fisiología , Mutación/genética , Plasticidad Neuronal/genética , Fosfopiruvato Hidratasa/metabolismo , Factores Despolimerizantes de la Actina/genética , Factores Despolimerizantes de la Actina/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Nucléolo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Hipocampo/citología , Hipocampo/metabolismo , Técnicas In Vitro , Potenciación a Largo Plazo/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/fisiología , Neuronas/ultraestructura , Fosfopiruvato Hidratasa/genética , Fosforilación/genética , Eliminación de Secuencia/genética , Transducción Genética
5.
J Neurosci ; 37(5): 1197-1212, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27986924

RESUMEN

Long-term potentiation (LTP) is an activity-dependent and persistent increase in synaptic transmission. Currently available techniques to measure LTP are time-intensive and require highly specialized expertise and equipment, and thus are not well suited for screening of multiple candidate treatments, even in animal models. To expand and facilitate the analysis of LTP, here we use a flow cytometry-based method to track chemically induced LTP by detecting surface AMPA receptors in isolated synaptosomes: fluorescence analysis of single-synapse long-term potentiation (FASS-LTP). First, we demonstrate that FASS-LTP is simple, sensitive, and models electrically induced LTP recorded in intact circuitries. Second, we conducted FASS-LTP analysis in two well-characterized Alzheimer's disease (AD) mouse models (3xTg and Tg2576) and, importantly, in cryopreserved human AD brain samples. By profiling hundreds of synaptosomes, our data provide the first direct evidence to support the idea that synapses from AD brain are intrinsically defective in LTP. Third, we used FASS-LTP for drug evaluation in human synaptosomes. Testing a panel of modulators of cAMP and cGMP signaling pathways, FASS-LTP identified vardenafil and Bay-73-6691 (phosphodiesterase-5 and -9 inhibitors, respectively) as potent enhancers of LTP in synaptosomes from AD cases. These results indicate that our approach could provide the basis for protocols to study LTP in both healthy and diseased human brains, a previously unattainable goal. SIGNIFICANCE STATEMENT: Learning and memory depend on the ability of synapses to strengthen in response to activity. Long-term potentiation (LTP) is a rapid and persistent increase in synaptic transmission that is thought to be affected in Alzheimer's disease (AD). However, direct evidence of LTP deficits in human AD brain has been elusive, primarily due to methodological limitations. Here, we analyze LTP in isolated synapses from AD brain using a novel approach that allows testing LTP in cryopreserved brain. Our analysis of hundreds of synapses supports the idea that AD-diseased synapses are intrinsically defective in LTP. Further, we identified pharmacological agents that rescue LTP in AD, thus opening up a new avenue for drug screening and evaluation of strategies for alleviating memory impairments.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , AMP Cíclico/fisiología , GMP Cíclico/fisiología , Estimulación Eléctrica , Citometría de Flujo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Inhibidores de Fosfodiesterasa/farmacología , Ratas Sprague-Dawley , Receptores AMPA/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sinaptosomas/efectos de los fármacos
6.
J Neurosci ; 36(44): 11295-11307, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27807170

RESUMEN

Stress influences memory, an adaptive process crucial for survival. During stress, hippocampal synapses are bathed in a mixture of stress-released molecules, yet it is unknown whether or how these interact to mediate the effects of stress on memory. Here, we demonstrate novel synergistic actions of corticosterone and corticotropin-releasing hormone (CRH) on synaptic physiology and dendritic spine structure that mediate the profound effects of acute concurrent stresses on memory. Spatial memory in mice was impaired enduringly after acute concurrent stresses resulting from loss of synaptic potentiation associated with disrupted structure of synapse-bearing dendritic spines. Combined application of the stress hormones corticosterone and CRH recapitulated the physiological and structural defects provoked by acute stresses. Mechanistically, corticosterone and CRH, via their cognate receptors, acted synergistically on the spine-actin regulator RhoA, promoting its deactivation and degradation, respectively, and destabilizing spines. Accordingly, blocking the receptors of both hormones, but not each alone, rescued memory. Therefore, the synergistic actions of corticosterone and CRH at hippocampal synapses underlie memory impairments after concurrent and perhaps also single, severe acute stresses, with potential implications to spatial memory dysfunction in, for example, posttraumatic stress disorder. SIGNIFICANCE STATEMENT: Stress influences memory, an adaptive process crucial for survival. During stress, adrenal corticosterone and hippocampal corticotropin-releasing hormone (CRH) permeate memory-forming hippocampal synapses, yet it is unknown whether (and how) these hormones interact to mediate effects of stress. Here, we demonstrate novel synergistic actions of corticosterone and CRH on hippocampal synaptic plasticity and spine structure that mediate the memory-disrupting effects of stress. Combined application of both hormones provoked synaptic function collapse and spine disruption. Mechanistically, corticosterone and CRH synergized at the spine-actin regulator RhoA, promoting its deactivation and degradation, respectively, and destabilizing spines. Notably, blocking both hormones, but not each alone, prevented the enduring memory problems after acute concurrent stresses. Therefore, synergistic actions of corticosterone and CRH underlie enduring memory impairments after concurrent acute stresses, which might be relevant to spatial memory deficits described in posttraumatic stress disorder.


Asunto(s)
Corticosterona/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Hipocampo/fisiopatología , Trastornos de la Memoria/fisiopatología , Memoria Espacial , Estrés Psicológico/fisiopatología , Enfermedad Aguda , Animales , Corticosterona/administración & dosificación , Hormona Liberadora de Corticotropina/administración & dosificación , Sinergismo Farmacológico , Hipocampo/efectos de los fármacos , Masculino , Trastornos de la Memoria/etiología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Estrés Psicológico/complicaciones
7.
eNeuro ; 3(4)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27517090

RESUMEN

The endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), a key modulator of synaptic transmission in mammalian brain, is produced in dendritic spines and then crosses the synaptic junction to depress neurotransmitter release. Here we report that 2-AG-dependent retrograde signaling also mediates an enduring enhancement of glutamate release, as assessed with independent tests, in the lateral perforant path (LPP), one of two cortical inputs to the granule cells of the dentate gyrus. Induction of this form of long-term potentiation (LTP) involved two types of glutamate receptors, changes in postsynaptic calcium, and the postsynaptic enzyme that synthesizes 2-AG. Stochastic optical reconstruction microscopy confirmed that CB1 cannabinoid receptors are localized presynaptically to LPP terminals, while the inhibition or knockout of the receptors eliminated LPP-LTP. Suppressing the enzyme that degrades 2-AG dramatically enhanced LPP potentiation, while overexpressing it produced the opposite effect. Priming with a CB1 agonist markedly reduced the threshold for LTP. Latrunculin A, which prevents actin polymerization, blocked LPP-LTP when applied extracellularly but had no effect when infused postsynaptically into granule cells, indicating that critical actin remodeling resides in the presynaptic compartment. Importantly, there was no evidence for the LPP form of potentiation in the Schaffer-commissural innervation of field CA1 or in the medial perforant path. Peripheral injections of compounds that block or enhance LPP-LTP had corresponding effects on the formation of long-term memory for cues conveyed to the dentate gyrus by the LPP. Together, these results indicate that the encoding of information carried by a principal hippocampal afferent involves an unusual, regionally differentiated form of plasticity.


Asunto(s)
Corteza Cerebral/metabolismo , Endocannabinoides/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Receptor Cannabinoide CB1/metabolismo , Actinas/metabolismo , Animales , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones Transgénicos , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Percepción Olfatoria/efectos de los fármacos , Percepción Olfatoria/fisiología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Ratas Long-Evans , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/genética , Técnicas de Cultivo de Tejidos
8.
J Neurosci ; 36(5): 1636-46, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26843645

RESUMEN

Positive allosteric modulators of AMPA-type glutamate receptors (ampakines) have been shown to rescue synaptic plasticity and reduce neuropathology in rodent models of cognitive disorders. Here we tested whether chronic ampakine treatment offsets age-related dendritic retraction in middle-aged (MA) rats. Starting at 10 months of age, rats were housed in an enriched environment and given daily treatment with a short half-life ampakine or vehicle for 3 months. Dendritic branching and spine measures were collected from 3D reconstructions of Lucifer yellow-filled CA1 pyramidal cells. There was a substantial loss of secondary branches, relative to enriched 2.5-month-old rats, in apical and basal dendritic fields of vehicle-treated, but not ampakine-treated, 13-month-old rats. Baseline synaptic responses in CA1 were only subtly different between the two MA groups, but long-term potentiation was greater in ampakine-treated rats. Unsupervised learning of a complex environment was used to assess treatment effects on behavior. Vehicle- and drug-treated rats behaved similarly during a first 30 min session in the novel environment but differed markedly on subsequent measures of long-term memory. Markov sequence analysis uncovered a clear increase in the predictability of serial movements between behavioral sessions 2 and 3 in the ampakine, but not vehicle, group. These results show that a surprising degree of dendritic retraction occurs by middle age and that this can be mostly offset by pharmacological treatments without evidence for unwanted side effects. The functional consequences of rescue were prominent with regard to memory but also extended to self-organization of behavior. SIGNIFICANCE STATEMENT: Brain aging is characterized by a progressive loss of dendritic arbors and the emergence of impairments to learning-related synaptic plasticity. The present studies show that dendritic losses are evident by middle age despite housing in an enriched environment and can be mostly reversed by long-term, oral administration of a positive allosteric modulator of AMPA-type glutamate receptors. Dendritic recovery was accompanied by improvements to both synaptic plasticity and the encoding of long-term memory of a novel, complex environment. Because the short half-life compound had no evident negative effects, the results suggest a plausible strategy for treating age-related neuronal deterioration.


Asunto(s)
Envejecimiento/fisiología , Dendritas/fisiología , Hipocampo/crecimiento & desarrollo , Aprendizaje/fisiología , Receptores AMPA/administración & dosificación , Envejecimiento/efectos de los fármacos , Animales , Dendritas/efectos de los fármacos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Long-Evans , Receptores AMPA/fisiología
9.
J Physiol ; 593(13): 2889-907, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25902928

RESUMEN

KEY POINTS: Extended trains of theta rhythm afferent activity lead to a biphasic response facilitation in field CA1 but not in the lateral perforant path input to the dentate gyrus. Processes that reverse long-term potentiation in field CA1 are not operative in the lateral perforant path: multiple lines of evidence indicate that this reflects differences in adenosine signalling. Adenosine A1 receptors modulate baseline synaptic transmission in the lateral olfactory tract but not the associational afferents of the piriform cortex. Levels of ecto-5'-nucleotidase (CD73), an enzyme that converts extracellular ATP into adenosine, are markedly different between regions and correlate with adenosine signalling and the efficacy of theta pulse stimulation in reversing long-term potentiation. Variations in transmitter mobilization, CD73 levels, and afferent divergence result in multivariate differences in signal processing through nodes in the cortico-hippocampal network. ABSTRACT: The present study evaluated learning-related synaptic operations across the serial stages of the olfactory cortex-hippocampus network. Theta frequency stimulation produced very different time-varying responses in the Schaffer-commissural projections than in the lateral perforant path (LPP), an effect associated with distinctions in transmitter mobilization. Long-term potentiation (LTP) had a higher threshold in LPP field potential studies but not in voltage clamped neurons; coupled with input/output relationships, these results suggest that LTP threshold differences reflect the degree of input divergence. Theta pulse stimulation erased LTP in CA1 but not in the dentate gyrus (DG), although adenosine eliminated potentiation in both areas, suggesting that theta increases extracellular adenosine to a greater degree in CA1. Moreover, adenosine A1 receptor antagonism had larger effects on theta responses in CA1 than in the DG, and concentrations of ecto-5'-nucleotidase (CD73) were much higher in CA1. Input/output curves for two connections in the piriform cortex were similar to those for the LPP, whereas adenosine modulation again correlated with levels of CD73. In sum, multiple relays in a network extending from the piriform cortex through the hippocampus can be differentiated along three dimensions (input divergence, transmitter mobilization, adenosine modulation) that potently influence throughput and plasticity. A model that incorporates the regional differences, supplemented with data for three additional links, suggests that network output goes through three transitions during the processing of theta input. It is proposed that individuated relays allow the circuit to deal with different types of behavioural problems.


Asunto(s)
Adenosina/metabolismo , Región CA1 Hipocampal/fisiología , Potenciación a Largo Plazo , Corteza Piriforme/fisiología , Potenciales Sinápticos , 5'-Nucleotidasa/metabolismo , Animales , Región CA1 Hipocampal/metabolismo , Giro Dentado/metabolismo , Giro Dentado/fisiología , Masculino , Corteza Piriforme/metabolismo , Ratas , Ratas Sprague-Dawley , Ritmo Teta
10.
J Neurosci ; 34(8): 3033-41, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24553943

RESUMEN

Recent work showed that unsupervised learning of a complex environment activates synaptic proteins essential for the stabilization of long-term potentiation (LTP). The present study used automated methods to construct maps of excitatory synapses associated with high concentrations of one of these LTP-related proteins [CaMKII phosphorylated at T286/287, (pCaMKII)]. Labeling patterns across 42 sampling zones covering entire cross sections through rostral hippocampus were assessed for two groups of rats that explored a novel two-room arena for 30 min, with or without a response contingency involving mildly aversive cues. The number of pCaMKII-immunopositive (+) synapses was highly correlated between the two groups for the 21 sampling zones covering the dentate gyrus, CA3c/hilus, and apical dendrites of field CA1, but not for the remainder of the cross section. The distribution of pCaMKII+ synapses in the large uncorrelated segment differed markedly between the groups. Subtracting home-cage values removed high scores (i.e., sampling zones with a high percentage of pCaMKII+ contacts) in the negative contingency group, but not in the free-exploration animals. Three sites in the latter had values that were markedly elevated above other fields. These mapping results suggest that encoding of a form of memory that is dependent upon rostral hippocampus reliably occurs at high levels in discrete anatomical zones, and that this regionally differentiated response is blocked when animals are inhibited from freely exploring the environment by the introduction of a mildly aversive stimulus.


Asunto(s)
Hipocampo/fisiología , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Sinapsis/fisiología , Animales , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Señales (Psicología) , Conducta Exploratoria/fisiología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Masculino , Aprendizaje por Laberinto/fisiología , Actividad Motora/fisiología , Ratas , Ratas Long-Evans , Programas Informáticos , Percepción Espacial/fisiología , Sinapsis/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...