Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 18(7)2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30011947

RESUMEN

Silicon carbide (SiC) is a compound semiconductor, which is considered as a possible alternative to silicon for particles and photons detection. Its characteristics make it very promising for the next generation of nuclear and particle physics experiments at high beam luminosity. Silicon Carbide detectors for Intense Luminosity Investigations and Applications (SiCILIA) is a project starting as a collaboration between the Italian National Institute of Nuclear Physics (INFN) and IMM-CNR, aiming at the realization of innovative detection systems based on SiC. In this paper, we discuss the main features of silicon carbide as a material and its potential application in the field of particles and photons detectors, the project structure and the strategies used for the prototype realization, and the first results concerning prototype production and their performance.

2.
J Agric Food Chem ; 56(13): 5407-14, 2008 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-18557623

RESUMEN

The chemical composition of 30 samples of juices obtained from bergamot (Citrus bergamia Risso and Poit.) fruits is reported and compared to the genuineness parameters adopted by Association of the Industry of Juice and Nectars (AIJN) for lemon juice. It was found that the compositional differences between the two juices are distinguishable, although with difficulty. However, these differences are not strong enough to detect the fraudulent addition of bergamot juice to lemon juice. Instead, we found the high-performance liquid chromatography (HPLC) analysis of the flavanones naringin, neohesperidin, and neoeriocitrin, which are present in bergamot juice and practically absent in the lemon juice, is a convenient way to detect and quantify the fraudulent addition of bergamot juice. The method has been validated by calculating the detection and quantification limits according to Eurachem procedures. Employing neoeriocitrin (detection limit = 0.7 mg/L) and naringin (detection limit = 1 mg/L) as markers, it is possible to detect the addition of bergamot juice to lemon juice at the 1% level. When using neohesperidin as a marker (detection limit = 1 mg/L), the minimal percentage of detectable addition of bergamot juice was about 2%. Finally, it is reported that the pattern of flavonoid content of the bergamot juice is similar to those of chinotto (Citrus myrtifolia Raf) and bitter orange (Citrus aurantium L.) juices and that it is possible to distinguish the three kinds of juices by HPLC analysis.


Asunto(s)
Bebidas/análisis , Citrus/química , Flavanonas/análisis , Industria de Alimentos/normas , Frutas/química , Glicósidos/análisis , Cromatografía Líquida de Alta Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...