Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Gastroenterol ; 30(9): 994-998, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38577187

RESUMEN

In this editorial, we comment on the article by Lyu et al published in the recent issue of the World Journal of Gastroenterology (2023; 2219-2840). Hepatocellular carcinoma (HCC) is a frequently encountered and highly aggressive primary liver cancer, which remains the third-commonest cause of cancer-related death despite the current therapeutic modalities. There is urgency in developing novel therapeutic approaches, such as by manipulating extracellular vesicles, which constitute a highly heterogeneous nanoparticle population that contains various cargoes. These cargoes have a pivotal role in cell-to-cell communication and can modify the functional level of the recipient cells via their uptake by other recipient cells. Exosomal non-coding RNAs have particular evolving significance in HCC, such as circular RNAs, which have been found differentially expressed in normal hepatic and HCC tissues. The aberrations in their expression levels have a key role in the HCC development and progression and the overall prognosis. In this editorial, we will shed light on the emerging role of exosomal circular RNAs in HCC development and progression, focusing on the oncogenic or potentially tumor suppressive effect of mesenchymal stem cells-derived exosomal non-coding RNAs.


Asunto(s)
Carcinoma Hepatocelular , Exosomas , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , Exosomas/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica
2.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38542378

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, while it persists as the fourth most prevalent cause of cancer-related death in the United States of America. Although there are several novel therapeutic strategies for the approach of this intensely aggressive tumor, it remains a clinical challenge, as it is hard to identify in early stages, due to its asymptomatic course. A diagnosis is usually established when the disease is already in its late stages, while its chemoresistance constitutes an obstacle to the optimal management of this malignancy. The discovery of novel diagnostic and therapeutic tools is considered a necessity for this tumor, due to its low survival rates and treatment failures. One of the most extensively investigated potential diagnostic and therapeutic modalities is extracellular vesicles (EVs). These vesicles constitute nanosized double-lipid membraned particles that are characterized by a high heterogeneity that emerges from their distinct biogenesis route, their multi-variable sizes, and the particular cargoes that are embedded into these particles. Their pivotal role in cell-to-cell communication via their cargo and their implication in the pathophysiology of several diseases, including pancreatic cancer, opens new horizons in the management of this malignancy. Meanwhile, the interplay between pancreatic carcinogenesis and short non-coding RNA molecules (micro-RNAs or miRs) is in the spotlight of current studies, as they can have either a role as tumor suppressors or promoters. The deregulation of both of the aforementioned molecules leads to several aberrations in the function of pancreatic cells, leading to carcinogenesis. In this review, we will explore the role of extracellular vesicles and miRNAs in pancreatic cancer, as well as their potent utilization as diagnostic and therapeutic tools.


Asunto(s)
Carcinoma Ductal Pancreático , Vesículas Extracelulares , MicroARNs , Neoplasias Pancreáticas , Humanos , MicroARNs/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Carcinogénesis/patología
3.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958547

RESUMEN

Cholangiocarcinomas (CCAs) constitute a heterogeneous group of highly malignant epithelial tumors arising from the biliary tree. This cluster of malignant tumors includes three distinct entities, the intrahepatic, perihilar, and distal CCAs, which are characterized by different epidemiological and molecular backgrounds, as well as prognosis and therapeutic approaches. The higher incidence of CCA over the last decades, the late diagnostic time that contributes to a high mortality and poor prognosis, as well as its chemoresistance, intensified the efforts of the scientific community for the development of novel diagnostic tools and therapeutic approaches. Extracellular vesicles (EVs) comprise highly heterogenic, multi-sized, membrane-enclosed nanostructures that are secreted by a large variety of cells via different routes of biogenesis. Their role in intercellular communication via their cargo that potentially contributes to disease development and progression, as well as their prospect as diagnostic biomarkers and therapeutic tools, has become the focus of interest of several current studies for several diseases, including CCA. The aim of this review is to give a rundown of the current knowledge regarding the emerging role of EVs in cholangiocarcinogenesis and their future perspectives as diagnostic and therapeutic tools.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Vesículas Extracelulares , Humanos , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/terapia , Colangiocarcinoma/etiología , Comunicación Celular , Conductos Biliares Intrahepáticos , Neoplasias de los Conductos Biliares/diagnóstico , Neoplasias de los Conductos Biliares/terapia , Neoplasias de los Conductos Biliares/etiología
4.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108330

RESUMEN

Hepatocellular carcinoma (HCC) constitutes a frequent highly malignant form of primary liver cancer and is the third cause of death attributable to malignancy. Despite the improvement in the therapeutic strategies with the exploration of novel pharmacological agents, the survival rate for HCC is still low. Shedding light on the multiplex genetic and epigenetic background of HCC, such as on the emerging role of microRNAs, is considered quite promising for the diagnosis and the prediction of this malignancy, as well as for combatting drug resistance. MicroRNAs (miRNAs) constitute small noncoding RNA sequences, which play a key role in the regulation of several signaling and metabolic pathways, as well as of pivotal cellular functions such as autophagy, apoptosis, and cell proliferation. It is also demonstrated that miRNAs are significantly implicated in carcinogenesis, either acting as tumor suppressors or oncomiRs, while aberrations in their expression levels are closely associated with tumor growth and progression, as well as with local invasion and metastatic dissemination. The arising role of miRNAs in HCC is in the spotlight of the current scientific research, aiming at the development of novel therapeutic perspectives. In this review, we will shed light on the emerging role of miRNAs in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , MicroARNs/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Carcinogénesis/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
5.
Genes (Basel) ; 14(2)2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36833401

RESUMEN

Autophagy constitutes a well-known homeostatic and catabolic process that is responsible for degradation and recycling of cellular components. It is a key regulatory mechanism for several cellular functions, whereas its dysregulation is associated with tumorigenesis, tumor-stroma interactions and resistance to cancer therapy. A growing body of evidence has proven that autophagy affects the tumor microenvironment, while it is also considered a key factor for function of several immune cells, such as APCs, T-cells, and macrophages. Moreover, it is implicated in presentation of neo-antigens of tumor cells in both MHC-I and MHC-II in dendritic cells (DCs) in functional activity of immune cells by creating T-cell memory, as well as in cross-presentation of neo-antigens for MHC-I presentation and the internalization process. Currently, autophagy has a crucial role in immunotherapy. Emergence of cancer immunotherapy has already shown some remarkable results, having changed therapeutic strategy in clinical practice for several cancer types. Despite these promising long-term responses, several patients seem to lack the ability to respond to immune checkpoint inhibitors. Thus, autophagy through neo-antigen presentation is a potential target in order to strengthen or attenuate the effects of immunotherapy against different types of cancer. This review will shed light on the recent advances and future directions of autophagy-dependent neo-antigen presentation and consequently its role in immunotherapy for malignant tumors.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Células Dendríticas , Autofagia , Presentación de Antígeno , Antígenos/metabolismo , Neoplasias/metabolismo
6.
Cancers (Basel) ; 15(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36672324

RESUMEN

In recent years, in the context of the increase in the life expectancy of cancer patients, special attention has been given to immunotherapy and, indeed, to immune checkpoint inhibitors. The use of immune checkpoint inhibitors has increased rapidly, and approximately 40% of cancer patients are eligible for this treatment. Although their impact is valuable on cancer treatment, immune checkpoint inhibitors come with side effects, known as immune-related adverse effects. These can affect many systems, including cutaneous, musculoskeletal, cardiovascular, gastrointestinal, endocrine, neural, and pulmonary systems. In this review, we focus on immune-related endocrinopathies that affect around 10% of all treated patients. Endocrine dysfunctions can manifest as hypophysitis, thyroid dysfunction, hypoparathyroidism, insulin-deficient diabetes mellitus, and primary adrenal insufficiency. Currently, there are multiple ongoing clinical trials that aim to identify possible predictive biomarkers for immune-related adverse effects. The design of those clinical trials relies on collecting a variety of biological specimens (tissue biopsy, blood, plasma, saliva, and stool) at baseline and regular intervals during treatment. In this review, we present the predictive biomarkers (such as antibodies, hormones, cytokines, human leukocyte antigens, and eosinophils) that could potentially be utilized in clinical practice in order to predict adverse effects and manage them appropriately.

7.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36362398

RESUMEN

The development of cancer is a multifactorial phenomenon, while it constitutes a major global health problem. Viruses are an important factor that is involved in tumorigenesis and is associated with 12.1% of all cancer cases. Major examples of oncogenic viruses which are closely associated with the digestive system are HBV, HCV, EBV, HPV, JCV, and CMV. EBV, HPV, JCV, and CMV directly cause oncogenesis by expressing oncogenic proteins that are encoded in their genome. In contrast, HBV and HCV are correlated indirectly with carcinogenesis by causing chronic inflammation in the infected organs. In addition, the tumor microenvironment contains various immune cells, endothelial cells, and fibroblasts, as well as several growth factors, cytokines, and other tumor-secreted molecules that play a key role in tumor growth, progression, and migration, while they are closely interrelated with the virus. The presence of T-regulatory and B-regulatory cells in the tumor microenvironment plays an important role in the anti-tumor immune reaction. The tumor immune microenvironments differ in each type of cancer and depend on viral infection. The alterations in the immune microenvironment caused by viruses are also reflected in the effectiveness of immunotherapy. The present review aims at shedding light on the association between viruses and digestive system malignancies, the characteristics of the tumor immune microenvironment that develop, and the possible treatments that can be administered.


Asunto(s)
Infecciones por Citomegalovirus , Neoplasias Gastrointestinales , Hepatitis C , Infecciones por Papillomavirus , Humanos , Células Endoteliales , Microambiente Tumoral , Carcinogénesis , Inmunoterapia , Transformación Celular Neoplásica
8.
Ann Gastroenterol ; 35(6): 557-567, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406965

RESUMEN

Atrial fibrillation (AF) is an increasingly recognized comorbidity in patients with liver cirrhosis, mainly associated with nonalcoholic fatty liver disease and alcohol-associated liver disease, affecting the quality of life and prognosis. On the other hand, cirrhosis is associated with an elevated risk of both thrombosis and bleeding, making the decision about anticoagulation therapy very challenging. Direct-acting oral anticoagulants (DOACs) are approved for patients with non-valvular AF. However, there is limited clinical experience and scientific evidence about their efficacy and safety in liver cirrhosis. This review article investigates the published literature concerning the administration of DOACs and traditional antithrombotic agents, such as vitamin K antagonists and heparins, in patients with liver cirrhosis and AF.

9.
J Multidiscip Healthc ; 15: 2301-2309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247180

RESUMEN

Haemophilia is a rare, hereditary bleeding disorder. Clotting factor concentrates were a revolutionary treatment which changed the life of people with haemophilia. However, early generation of clotting factor concentrates, without viral inactivation procedures in the manufacturing process, led to an increased risk of transmission of blood-borne viral infections, mainly due to hepatitis C virus and human immunodeficiency virus. As only 20% of HCV-infected patients clear the infection naturally, chronic HCV infection constitutes a serious health problem and a major cause of chronic liver disease in this group of patients. Fortunately, the use of viral inactivation procedures in the plasma-derived factor concentrates manufacturing process and the availability of alternative treatment options, led to a significant reduction of transfusion-associated viral infections. The advent of multiple, orally administrated, highly effective direct-acting antivirals (DAAs) is changing the natural history of HCV infection in patients with haemophilia as these drugs have an excellent safety profile and achieve very high sustained virological response rates, similar to the general population. Eradication of HCV-infection in patients with haemophilia is feasible via micro-elimination projects.

10.
World J Gastrointest Oncol ; 14(9): 1665-1674, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36187397

RESUMEN

Colorectal cancer (CRC) constitutes the third most frequently reported malignancy in the male population and the second most common in women in the last two decades. Colon carcinogenesis is a complex, multifactorial event, resulting from genetic and epigenetic aberrations, the impact of environmental factors, as well as the disturbance of the gut microbial ecosystem. The relationship between the intestinal microbiome and carcinogenesis was relatively undervalued in the last decade. However, its remarkable effect on metabolic and immune functions on the host has been in the spotlight as of recent years. There is a strong relationship between gut microbiome dysbiosis, bowel pathogenicity and responsiveness to anti-cancer treatment; including immunotherapy. Modifications of bacteriome consistency are closely associated with the immunologic response to immunotherapeutic agents. This condition that implies the necessity of gut microbiome manipulation. Thus, creatingan optimal response for CRC patients to immunotherapeutic agents. In this paper, we will review the current literature observing how gut microbiota influence the response of immunotherapy on CRC patients.

11.
Genes (Basel) ; 13(10)2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36292753

RESUMEN

Pancreatic cancer constitutes the fourth most frequent cause of death due to malignancy in the US. Despite the new therapeutic modalities, the management of pancreatic ductal adenocarcinoma (PDAC) is considered a difficult task for clinicians due to the fact that is usually diagnosed in already advanced stages and it is relatively resistant to the current chemotherapeutic agents. The molecular background analysis of pancreatic malignant tumors, which includes various epigenetic and genetic alterations, opens new horizons for the development of novel diagnostic and therapeutic strategies. The interplay between miRNAs, autophagy pathway, and pancreatic carcinogenesis is in the spotlight of the current research. There is strong evidence that miRNAs take part in carcinogenesis either as tumor inhibitors that combat the oncogene expression or as promoters (oncomiRs) by acting as oncogenes by interfering with various cell functions such as proliferation, programmed cell death, and metabolic and signaling pathways. Deregulation of the expression levels of various miRNAs is closely associated with tumor growth, progression, and dissemination, as well as low sensitivity to chemotherapeutic agents. Similarly, autophagy despite constituting a pivotal homeostatic mechanism for cell survival has a binary role in PDAC, either as an inhibitor or promoter of carcinogenesis. The emerging role of miRNAs in autophagy gets a great deal of attention as it opens new opportunities for the development of novel therapeutic strategies for the management of this aggressive and chemoresistant malignancy. In this review, we will shed light on the interplay between miRNAs and the autophagy mechanism for pancreatic cancer development and progression.


Asunto(s)
Antineoplásicos , Carcinoma Ductal Pancreático , MicroARNs , Neoplasias Pancreáticas , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Autofagia/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinogénesis , Neoplasias Pancreáticas
12.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36293042

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is considered the most frequent chronic hepatic disease in the general population, while it is the first cause of liver transplantation in the US. NAFLD patients will subsequently develop non-alcoholic steatohepatitis (NASH), which is characterized by aberrant hepatocellular inflammation with or without the presence of fibrosis. The lack of specific biomarkers and therapeutic strategies makes non-alcoholic steatohepatitis (NASH) management a difficult task for clinicians. Extracellular vesicles (EVs) constitute a heterogenic population of vesicles produced by inward or outward plasma-membrane budding. There is an emerging connection between autophagy EVs production, via an unconventional non-degradative procedure. Alterations in the amount of the secreted EVs and the cargo they carry are also involved in the disease progression and development of NASH. Autophagy constitutes a multistep lysosomal degradative pathway that reassures cell homeostasis and survival under stressful conditions, such as oxygen and energy deprivation. It prevents cellular damage by eliminating defected proteins or nοn-functional intracellular organelles. At the same time, it reassures the optimal conditions for the cells via a different mechanism that includes the removal of cargo via the secretion of EVs. Similarly, autophagy machinery is also associated with the pathogenetic mechanism of NAFLD, while it has a significant implication for the progression of the disease and the development of NASH. In this review, we will shed light on the interplay between autophagy and EVs in NASH, the emerging connection of EVs production with the autophagy pathway, and their possible manipulation for developing future therapeutic strategies for NASH.


Asunto(s)
Vesículas Extracelulares , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Vesículas Extracelulares/metabolismo , Autofagia , Biomarcadores/metabolismo , Oxígeno/metabolismo
13.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35743107

RESUMEN

Gastrointestinal (GI) cancer constitutes a highly lethal entity among malignancies in the last decades and is still a major challenge for cancer therapeutic options. Despite the current combinational treatment strategies, including chemotherapy, surgery, radiotherapy, and targeted therapies, the survival rates remain notably low for patients with advanced disease. A better knowledge of the molecular mechanisms that influence tumor progression and the development of optimal therapeutic strategies for GI malignancies are urgently needed. Currently, the development and the assessment of the efficacy of immunotherapeutic agents in GI cancer are in the spotlight of several clinical trials. Thus, several new modalities and combinational treatments with other anti-neoplastic agents have been identified and evaluated for their efficiency in cancer management, including immune checkpoint inhibitors, adoptive cell transfer, chimeric antigen receptor (CAR)-T cell therapy, cancer vaccines, and/or combinations thereof. Understanding the interrelation among the tumor microenvironment, cancer progression, and immune resistance is pivotal for the optimal therapeutic management of all gastrointestinal solid tumors. This review will shed light on the recent advances and future directions of immunotherapy for malignant tumors of the GI system.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias Gastrointestinales , Vacunas contra el Cáncer/uso terapéutico , Neoplasias Gastrointestinales/tratamiento farmacológico , Humanos , Factores Inmunológicos , Inmunoterapia , Inmunoterapia Adoptiva , Microambiente Tumoral
14.
Life (Basel) ; 12(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35629333

RESUMEN

Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) constitute highly malignant forms of primary liver cancers. Hepatocellular and bile duct carcinogenesis is a multiplex process, caused by various genetic and epigenetic alterations, the influence of environmental factors, as well as the implication of the gut microbiome, which was undervalued in the previous years. The molecular and immunological analysis of the above malignancies, as well as the identification of the crucial role of intestinal microbiota for hepatic and biliary pathogenesis, opened the horizon for novel therapeutic strategies, such as immunotherapy, and enhanced the overall survival of cancer patients. Some of the immunotherapy strategies that are either clinically applied or under pre-clinical studies include monoclonal antibodies, immune checkpoint blockade, cancer vaccines, as well as the utilization of oncolytic viral vectors and Chimeric antigen, receptor-engineered T (CAR-T) cell therapy. In this current review, we will shed light on the recent therapeutic modalities for the above primary liver cancers, as well as on the methods for the enhancement and optimization of anti-tumor immunity.

15.
Life (Basel) ; 11(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34947835

RESUMEN

Gastric cancer is the fifth most common malignancy and the third leading cause of cancer-related death worldwide. The three entirely variable entities have distinct epidemiology, molecular characteristics, prognosis, and strategies for clinical management. However, many gastric tumors appear to be resistant to current chemotherapeutic agents. Moreover, a significant number of gastric cancer patients, with a lack of optimal treatment strategies, have reduced survival. In recent years, multiple research data have highlighted the importance of autophagy, an essential catabolic process of cytoplasmic component digestion, in cancer. The role of autophagy as a tumor suppressor or tumor promoter mechanism remains controversial. The multistep nature of the autophagy process offers a wide array of targetable points for designing novel chemotherapeutic strategies. The purpose of this review is to summarize the current knowledge regarding the interplay between gastric cancer development and the autophagy process and decipher the role of autophagy in this kind of cancer. A plethora of different agents that direct or indirect target autophagy may be a novel therapeutic approach for gastric cancer patients.

16.
World J Gastrointest Oncol ; 13(10): 1229-1243, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34721764

RESUMEN

Cholangiocarcinomas (CCAs) are diverse biliary epithelial tumours involving the intrahepatic, perihilar and distal parts of the biliary tree. The three entirely variable entities have distinct epidemiology, molecular characteristics, prognosis and strategy for clinical management. However, many cholangiocarcinoma tumor-cells appear to be resistant to current chemotherapeutic agents. The role of autophagy and the therapeutic value of autophagy-based therapy are largely unknown in CCA. The multistep nature of autophagy offers a plethora of regulation points, which are prone to be deregulated and cause different human diseases, including cancer. However, it offers multiple targetable points for designing novel therapeutic strategies. Tumor cells have evolved to use autophagy as an adaptive mechanism for survival under stressful conditions such as energy imbalance and hypoxic region of tumors within the tumor microenvironment, but also to increase invasiveness and resistance to chemotherapy. The purpose of this review is to summarize the current knowledge regarding the interplay between autophagy and cholangiocarcinogenesis, together with some preclinical studies with agents that modulate autophagy in order to induce tumor cell death. Altogether, a combinatorial strategy, which comprises the current anti-cancer agents and autophagy modulators, would represent a positive CCA patient approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...