Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732382

RESUMEN

BACKGROUND: The current manuscript's aim was to determine the human papillomavirus (HPV) genotype-specific prevalence and distribution among individuals, males, and females, of different ages in the region of Apulia, Italy, highlighting the possible variables involved in the carcinogenicity mechanism. In addition, we proposed two hypothetical models of HPV's molecular dynamics, intending to clarify the impact of prevention and therapeutic strategies, explicitly modeled by recent survey data. METHODS: We presented clinical data from 9647 participants tested for either high-risk (HR) or low-risk (LR) HPV at the affiliated Bari Policlinic University Hospital of Bari from 2011 to 2022. HPV DNA detection was performed using nested-polymerase chain reaction (PCR) and multiplex real-time PCR assay. Statistical analysis showed significant associations for all genders and ages and both HR- and LR-HPV types. A major number of significant pairwise associations were detected for the higher-risk types and females and lower-risk types and males. RESULTS: The overall prevalence of HPV was 50.5% (n-4.869) vs. 49.5% (n-4.778) of the study population, of which 74.4% (n-3621) were found to be HPV high-risk (HR-HPV) genotypes and 57.7% (n-2.807) low-risk HPV (LR-HPV) genotypes, of which males were 58% and females 49%; the three most prevalent HR-HPV genotypes were HPV 53 (n707-15%), 16 (n704-14%), and 31 (n589-12%), and for LR-HPV, they were 42 (19%), 6 (16%), and 54 (13%); 56% of patients screened for HPV were ≤ 30 years old, 53% were between 31 and 40 years old, 46% were 41-50 and 51-60 years old, and finally, 44% of subjects were >60 years old. CONCLUSIONS: Our study provided comprehensive epidemiological data on HPV prevalence and genotype distribution among 9647 participants, which could serve as a significant reference for clinical practice, and it implied the necessity for more effective screening methods for HPV carcinogenesis covering the use of more specific molecular investigations. Although this is a predominantly descriptive and epidemiological study, the data obtained offer not only a fairly unique trend compared to other studies of different realities and latitudes but also lead us to focus on the HPV infection within two groups of young people and adults and hypothesize the possible involvement of dysbiosis, stem cells, and the retrotransposition mechanism.

2.
J Infect Public Health ; 17(6): 967-974, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38631066

RESUMEN

BACKGROUND: Candidemia is the most common healthcare associated invasive fungal infection. Over the last few decades, candidemia caused by Candida species other than Candida albicans, particularly the Candida parapsilosis complex, has emerged worldwide. The aims of this study were: to analyze the genotypic and phenotypic characteristics of C. parapsilosis strains isolated from blood cultures and the environment in a hospital in southern Italy, to study the possible source of infection and to correlate the isolated strains. METHODS: From April to October 2022, cases of candidemia due to C. parapsilosis in patients admitted to a hospital in the Apulia region were investigated. However, 119 environmental samples from the intensive care unit were collected for identification of the likely environmental reservoir of infection. Routine antifungal (amphotericin B, anidulafungin, fluconazole) susceptibility was performed on all isolates. Whole genome sequencing was performed to study the genotypic correlation of the isolates. Biofilm biomass and metabolic activity were also quantified for all isolates. RESULTS: A total of 43 C. parapsilosis isolates were cultured from the bloodstream of each patient in different departments, and seven surface samples were positive for C. parapsilosis. Most of the isolated yeasts (41/50; 85 %) were resistant to fluconazole and were genetically related to each other, suggesting an ongoing clonal outbreak of this pathogen. The fluconazole-susceptible isolates produced significantly more biofilm than did the resistant isolates. Metabolic activity was also higher for fluconazole-susceptible than resistant isolates. CONCLUSION: Cross-transmission of the microorganisms is suggested by the phenotypic similarity and genetic correlation between clinical and environmental strains observed in our study.

3.
Microorganisms ; 12(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38674635

RESUMEN

Ice consumption has widely increased over the last decade. Cases of ice contamination by various microorganisms (bacteria, viruses and fungi) have been documented in the literature. In this review, we summarize the findings of selected articles on the hygienic and sanitary quality of food ice from 1 January 2013 to 31 December 2023. A total of 14 articles found via the PubMed search engine during the study period were reviewed. From the comparison between the ice produced on an industrial scale and the ice produced on a local scale in food businesses, the latter was found to be more contaminated by microorganisms. The most detected bacteria included Escherichia coli, coliforms, Pseudomonas spp., Staphylococcus aureus; three studies evaluated the presence of Vibrio cholerae and Vibrio parahaemolyticus; two studies highlighted the presence of viruses (Rotavirus and Norovirus). Finally, two studies detected the presence of fungi (molds and yeasts). Almost all authors of the studies argued that ice contamination also depends on the hygienic-sanitary quality of the ice-making machines. The results show that the information currently available in the literature on the hygienic-sanitary quality of ice is incomplete and that future national and international scientific studies need to be carried out.

4.
Ann Ig ; 36(4): 487-497, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545674

RESUMEN

Introduction: The correct method of surface disinfection in hospitals is an essential tool in the fight against the spread of healthcare-associated infections caused by multi-resistant microorganisms. Currently, there are many disinfectants on the market that can be used against different microorganisms. However, the effectiveness of different active molecules is controversial in the literature. Study design: The aim of this study was to evaluate the effectiveness of wipes based on hydrogen peroxide (1.0 %) and highly specific plant-based surfactants, contained in H2O2TM (Hi-speed H2O2TM) products, against some hospital-associated microorganisms. Methods: The effectiveness of the wipes was tested against nosocomial and control strains of methicillin-resistant Staphylococcus aureus, carbapenem-resistant Pseudomonas aeruginosa, Klebsiella pneumoniae carbapenemase, Aspergillus fumigatus and Candida parapsilosis. Specifically, in vitro activity was assessed using three different techniques: stainless steel surface testing, surface diffusion testing and well diffusion test. Results: The three different methods tested confirm the wipes' good effectiveness against the most common multi-resistant bacteria and against fungi. Conclusions: These data show that the tested wipes could be a valid adjunct to the disinfection process and could assist in the prevention of healthcare-associated infections.


Asunto(s)
Infección Hospitalaria , Desinfectantes , Desinfección , Peróxido de Hidrógeno , Desinfección/métodos , Peróxido de Hidrógeno/farmacología , Infección Hospitalaria/prevención & control , Desinfectantes/farmacología , Humanos , Instituciones de Salud , Tensoactivos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos
5.
Acta Biomed ; 94(S3): e2023217, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37773490

RESUMEN

BACKGROUND AND AIM: Legionnaires' disease is a severe form of pneumonia caused by the inhalation or aspiration of water droplets contaminated with Legionella pneumophila and other Legionella species. These bacteria are commonly found in natural habitats and man-made water systems. Legionnaires' disease is a significant public health problem, especially in healthcare settings where patients may be exposed to contaminated environmental sources. Nosocomial outbreaks have been reported worldwide, leading to high morbidity and mortality rates, and increased healthcare costs. This study aimed to compare, the clonal relationship of clinical L. pneumophila strains from two different hospitals with L. pneumophila strains isolated from the water supply. METHODS: In the period from 2019 to 2021, clinical and environmental strains involved in three cases of legionellosis were compared by means of pulsed field gel electrophoresis and sequence based typing techniques. RESULTS: Our findings highlight the persistence of clonally distinct strains within each hospital examined. Furthermore, the L. pneumophila strains detected from hospital environmental sources were related to the clinical strains isolated, demonstrating the nosocomial origin of these cases. CONCLUSIONS: Therefore, it is important to implement more accurate surveillance systems both for epidemiological studies and to check the effectiveness of remediation procedures. (www.actabiomedica.it).


Asunto(s)
Infección Hospitalaria , Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Enfermedad de los Legionarios/diagnóstico , Enfermedad de los Legionarios/epidemiología , Enfermedad de los Legionarios/microbiología , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , Legionella pneumophila/genética , Abastecimiento de Agua , Agua
6.
Food Environ Virol ; 15(4): 331-341, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37735299

RESUMEN

During the COVID-19 pandemic, wastewater monitoring has been used to monitor the levels of SARS-CoV-2 RNA entering the sewerage system. In Italy, the Istituto Superiore di Sanità coordinated the SARI project (Sorveglianza Ambientale Reflue in Italia) to detect SARS-CoV-2 and its variants. In this study, the concentration of SARS-CoV-2 and its variants in raw wastewater against COVID-19 cases was evaluated together with the effect of temperature and precipitation on virus spread. We validated a predictive model, proposed by De Giglio et al., 2021, to establish the number of COVID-19 cases/100,000 inhabitants. A receiver operating characteristic curve model was applied to predict the number of COVID-19 cases and Poisson regression was applied to study the effect of temperature and rainfall on viral load. In Apulia, from October 2021 to December 2022, we analyzed 1041 samples, of which 985 (94.6%) tested positive for SARS-CoV-2. Median atmospheric temperature was inversely proportional to viral load in wastewater; no correlation was found with precipitation. The predictive model confirmed that at least 11 cases/100,000 inhabitants would occur in the 15 days following the detection of the virus in wastewater. Environmental surveillance of SARS-CoV-2 can be used to map the virus and its variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Monitoreo Epidemiológico Basado en Aguas Residuales , COVID-19/epidemiología , Pandemias , ARN Viral/genética , Aguas Residuales , Italia/epidemiología
7.
Pathogens ; 11(6)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35745531

RESUMEN

This study evaluated whether some chemical and microbial contaminants in treated sewage effluents from two wastewater treatment plants (WWTP) reached the groundwater when they drained through a fractured karst vadose zone (WWTP-K) and a porous vadose zone (WWTP-P). Forty-five samples of sewage water (SW), treated water (TW), and monitoring well (MW), collected from WWTP-P (24) and WWTP-K (21), were analyzed for a range of microbiological and chemical properties. The E. coli and Salmonella counts were below the limits outlined in the Legislative Decree 152/06 in effluents from both types of WWTP. Enteric viruses were found in 37.5% and 12.5% of the SW and TW from WWTP-P, respectively. The percentages of Pepper mild mottle virus isolated were higher in TW (62.5% in WWTP-P, 85.7% in WWTP-K) than in SW and MW. The residual concentrations of contaminants of emerging concern (CEC) of each drug category were higher in the MW downstream of WWTP-K than of WWTP-P. Our results showed that the porous vadose zone was more effective at reducing the contaminant loads than the fractured karst one, especially the CEC, in the effluent. The legislation should include other parameters to minimize the risks from treated effluent that is discharged to soil.

8.
Artículo en Inglés | MEDLINE | ID: mdl-35742328

RESUMEN

Aspergillosis is a disease caused by Aspergillus, and invasive pulmonary aspergillosis (IPA) is the most common invasive fungal infection leading to death in severely immuno-compromised patients. The literature reports Aspergillus co-infections in patients with COVID-19 (CAPA). Diagnosing CAPA clinically is complex since the symptoms are non-specific, and performing a bronchoscopy is difficult. Generally, the microbiological diagnosis of aspergillosis is based on cultural methods and on searching for the circulating antigens galactomannan and 1,3-ß-D-glucan in the bronchoalveolar lavage fluid (bGM) or serum (sGM). In this study, to verify whether the COVID-19 period has stimulated clinicians to pay greater attention to IPA in patients with respiratory tract infections, we evaluated the number of requests for GM-Ag research and the number of positive tests found during the pre-COVID-19 and COVID-19 periods. Our data show a significant upward trend in GM-Ag requests and positivity from the pre-COVID to COVID period, which is attributable in particular to the increase in IPA risk factors as a complication of COVID-19. In the COVID period, parallel to the increase in requests, the number of positive tests for GM-Ag also increased, going from 2.5% in the first period of 2020 to 12.3% in the first period of 2021.


Asunto(s)
COVID-19 , Aspergilosis Pulmonar Invasiva , Aspergilosis Pulmonar , Aspergillus , Líquido del Lavado Bronquioalveolar , COVID-19/epidemiología , Humanos , Aspergilosis Pulmonar Invasiva/complicaciones , Aspergilosis Pulmonar Invasiva/diagnóstico , Aspergilosis Pulmonar Invasiva/epidemiología , Aspergilosis Pulmonar/complicaciones , Aspergilosis Pulmonar/diagnóstico , Aspergilosis Pulmonar/epidemiología , Sensibilidad y Especificidad
9.
Pathogens ; 11(5)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35631009

RESUMEN

This study aimed to evaluate pathogenic bacterial contamination of the water-soil-plant system in potted olive trees irrigated with reclaimed wastewater. Desalinated water (DW) obtained by treating municipal wastewater (SW) and reclaimed water (RW) obtained by mixing SW with the brine (BR) produced by DESERT technology (tertiary treatment by ultrafiltration, active carbon and reverse osmosis) were used. Two different irrigation regimes were compared: full irrigation (FI) and regulated deficit irrigation (RDI). During two irrigation seasons the concentrations of Escherichia coli, enterococci, spores of sulfite-reducing Clostridia (SRC) and Salmonella spp. were monitored in water, soil and fruit samples. Microbial concentrations in DW were always below the threshold for reuse in agriculture, while RW showed the highest level of contamination for all observed parameters. RDI management appeared to increase the soil content of SRC spores with respect to FI. Sporadically low SRC spore contamination was recorded in some fruits only in 2018, regardless of the irrigation source, probably because of accidental contamination during sampling or post-harvest handling. This study encourages the creation of a better regulatory framework reference, with specific guidelines for the use of RW as part of integrated environmental systems for the management of sustainable agriculture.

10.
Pathogens ; 11(5)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35631128

RESUMEN

Awareness of the importance of the microbial contamination of air and surfaces has increased significantly during the COVID-19 pandemic. The aim of this study was to evaluate the presence of bacteria and fungi in the air and on surfaces within some critical areas of large supermarkets with and without an ozonation system. Surveys were conducted in four supermarkets belonging to the same commercial chain of an Apulian city in June 2021, of which two (A and B) were equipped with an ozonation system, and two (C and D) did not have any air-diffused remediation treatment. There was a statistically significant difference in the total bacterial count (TBC) and total fungal count (TFC) in the air between A/B and C/D supermarkets (p = 0.0042 and p = 0.0002, respectively). Regarding surfaces, a statistically significant difference in TBC emerged between A/B and C/D supermarkets (p = 0.0101). To the best of our knowledge, this is the first study evaluating the effect of ozone on commercial structures in Italy. Future investigations, supported by a multidisciplinary approach, will make it possible to deepen the knowledge on this method of sanitation, in light of any other epidemic/pandemic waves.

11.
Environ Monit Assess ; 194(6): 448, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35604473

RESUMEN

Coastal habitats provide important ecosystem services, such as the maintenance of ecological sustainability, water quality regulation, nutrient recycling, and sandy beaches which are important areas for recreation and tourism. The quality of seawater is generally measured by determining the concentrations of Escherichia coli and intestinal Enterococci, which might be affected by the persistent populations of these bacteria in sand. Sand might thus be a significant source of pathogen exposure to beachgoers. The quality of coastal recreational waters can also be affected by eutrophication, water discoloration, and harmful algal blooms, which pose additional human health risks. Here, we conducted a monitoring of the beaches quality along the Taranto Gulf by determining the concentrations of fecal indicator organisms, as well as other parameters that are not traditionally measured (physicochemical parameters, Pseudomonas aeruginosa, and harmful microalgae), in shallow seawater and sand sampled from three beaches. The concentrations of bacteria were determined using both standard microbiological methods and the IDEXX system. Our results demonstrate the utility of measuring a greater number of parameters in addition to those conventionally measured, as well as the importance of assessing the health risks posed by the sand matrix. Additional work is needed to develop rapid analytical techniques that could be used to monitor the microbiological parameters of solid matrices.


Asunto(s)
Playas , Monitoreo del Ambiente , Arena , Agua de Mar , Bacterias/aislamiento & purificación , Playas/normas , Ecosistema , Monitoreo del Ambiente/métodos , Escherichia coli/aislamiento & purificación , Humanos , Italia , Microalgas/aislamiento & purificación , Arena/química , Arena/microbiología , Agua de Mar/química , Agua de Mar/microbiología , Microbiología del Agua/normas , Calidad del Agua/normas
12.
Artículo en Inglés | MEDLINE | ID: mdl-35457735

RESUMEN

Healthcare-related infections are sustained by various bacteria and fungi. In recent years, various technologies have emerged for the sanitation of healthcare-related environments. This study evaluated the effectiveness of a no-touch disinfection system that aerosolizes 5% hydrogen peroxide and 10% ethyl alcohol. After selecting an environment, the Total Bacterial Count and the Total Fungal Count in the air and on a surface of the room were determined to evaluate the effectiveness of the aerosolization system. In addition, sterile stainless-steel plates inoculated with S. aureus, P. aeruginosa, and Aspergillus spp. isolated from hospitalized patients and reference strains were used to evaluate the effectiveness of the system. For each organism, three plates were used: A (cleaned), B (not cleaned), and C (control). The A plates were treated with non-ionic surfactant and the aerosolization system, the B plates were subjected to the aerosolization system, and the plates C were positioned outside the room that was sanitized. Following sanitization, air and surface sampling was conducted, after which, swabs were processed for bacterial and fungal enumeration. The results showed that the air sanitization system had good efficacy for both bacteria and fungi in the air and on stainless-steel plates, particularly for the A plates.


Asunto(s)
Desinfectantes , Desinfección , Aerosoles , Bacterias , Atención a la Salud , Desinfección/métodos , Etanol , Humanos , Peróxido de Hidrógeno , Pseudomonas aeruginosa , Acero Inoxidable , Staphylococcus aureus
13.
Artículo en Inglés | MEDLINE | ID: mdl-35206148

RESUMEN

The quantitative microbial risk assessment (QMRA) framework is used for assessing health risk coming from pathogens in the environment. In this paper, we used QMRA to evaluate the infection risk of L. pneumophila attributable to sink usage in a toilet cabin on Italian long-distance public transportation (LDT). LDT has water distribution systems with risk points for Legionella proliferation, as well as premise plumbing for drinking water, but they are not considered for risk assessment. Monitoring data revealed that approximately 55% of water samples (217/398) were positive for L. pneumophila, and the most frequently isolated was L. pneumophila sg1 (64%, 139/217); therefore, such data were fitted to the best probability distribution function to be used as a stochastic variable in the QMRA model. Then, a sink-specific aerosolization ratio was applied to calculate the inhaled dose, also considering inhalation rate and exposure time, which were used as stochastic parameters based on literature data. At L. pneumophila sg1 concentration ≤100 CFU/L, health risk was approximately 1 infection per 1 million exposures, with an increase of up to 5 infections per 10,000 exposures when the concentrations were ≥10,000 CFU/L. Our QMRA results showed a low Legionella infection risk from faucets on LDT; however, it deserves consideration since LDT can be used by people highly susceptible for the development of a severe form of the disease, owing to their immunological status or other predisposing factors. Further investigations could also evaluate Legionella-laden aerosols from toilet flushing.


Asunto(s)
Agua Potable , Legionella pneumophila , Legionella , Humanos , Medición de Riesgo , Microbiología del Agua , Abastecimiento de Agua
14.
Pathogens ; 11(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35056056

RESUMEN

The Mycobacteriumabscessus complex (MABC) is a group of rapidly growing, nontuberculous mycobacteria that are ubiquitous in soil, urban water pipes, swimming pools, and drinking water. Members of the MABC are considered opportunistic pathogens. The aim of this study was to investigate the origins of MABC detected in broncho-lavage (BL) samples from asymptomatic cancer patients. We turned our attention to washing and disinfection procedures for bronchoscopes; we also assessed water and disinfectant samples. Of 10 BL and 34 environmental samples tested, four BL samples (40%) and seven environmental samples (20.6%) tested positive for MABC. We hypothesized that contamination could arise from the prewashing machine and/or the water used because no patient had clinical or radiological signs consistent with MABC respiratory tract infection. Our study highlights the importance of evaluating cleaning and disinfection procedures for endoscope channels to reduce the potential spread of microorganisms and artefactual results arising from contamination.

15.
Artículo en Inglés | MEDLINE | ID: mdl-34769932

RESUMEN

Although direct contact is considered the main mode of transmission of SARS-CoV-2, environmental factors play an important role. In this study, we evaluated the presence of SARS-CoV-2 on bus and train surfaces. From the buses, we took samples from the following areas: handrails used to enter or exit the bus, stop request buttons and handles next to the seats. From the trains, the sampled surfaces were handrails used to enter or exit the train, door open/close buttons, handles next to the seats, tables and toilet handles. SARS-CoV-2 was detected on 10.7% of the tested surfaces overall, 19.3% of bus surfaces and 2% of train surfaces (p < 0.0001). On the buses, the most contaminated surfaces were the handles near the seats (12.8%), followed by door open/close buttons (12.5%) and handrails (10.5%). Of the five analyzed transport companies, bus companies were the most contaminated, in particular, companies C (40%) and B (23.3%). A greater number of positive samples were found among those taken at 10:00 a.m. and 10:55 a.m. (45% and 40%, respectively). The presence of the virus on many bus surfaces highlights how the sanitation systems on public transport currently in use are not sufficient to limit the spread of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vehículos a Motor , Saneamiento , Transportes
16.
Artículo en Inglés | MEDLINE | ID: mdl-34639592

RESUMEN

As a complement to clinical disease surveillance, the monitoring of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in wastewater can be used as an early warning system for impending epidemics. This study investigated the dynamics of SARS-CoV-2 in untreated wastewater with respect to the trend of coronavirus disease 2019 (COVID-19) prevalence in Southern Italy. A total of 210 wastewater samples were collected between May and November 2020 from 15 Apulian wastewater treatment plants (WWTP). The samples were concentrated in accordance with the standard of World Health Organization (WHO, Geneva, Switzerland) procedure for Poliovirus sewage surveillance, and molecular analysis was undertaken with real-time reverse-transcription quantitative PCR (RT-(q) PCR). Viral ribonucleic acid (RNA) was found in 12.4% (26/210) of the samples. The virus concentration in the positive samples ranged from 8.8 × 102 to 6.5 × 104 genome copies/L. The receiver operating characteristic (ROC) curve modeling showed that at least 11 cases/100,000 inhabitants would occur after a wastewater sample was found to be positive for SARS-CoV-2 (sensitivity = 80%, specificity = 80.9%). To our knowledge, this is the first study in Italy that has applied wastewater-based epidemiology to predict COVID-19 prevalence. Further studies regarding methods that include all variables (meteorological phenomena, characteristics of the WWTP, etc.) affecting this type of wastewater surveillance data would be useful to improve data interpretation.


Asunto(s)
COVID-19 , Humanos , Italia/epidemiología , SARS-CoV-2 , Aguas del Alcantarillado , Aguas Residuales
17.
Artículo en Inglés | MEDLINE | ID: mdl-34501993

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged in March 2020 in Italy, leading to the pandemic of coronavirus disease 2019 (COVID-19) that continues to cause high global morbidity and mortality in human populations. Numerous studies have focused on the spread and persistence of the virus in the hospital setting. New scientific evidence shows that SARS-CoV-2 is present in different community environments. Although aerosol is one of the main routes of transmission for SARS-CoV-2, indirect contact through virus-contaminated surfaces could also play a key role. The survival and persistence of SARS-CoV-2 on surfaces appear to be influenced by the characteristics of the material, temperature, and humidity. In this study, we investigated the presence of SARS-CoV-2 RNA on surfaces in 20 supermarkets throughout the Apulia region during the lockdown period. We collected a total of 300 swab samples from various surfaces including supermarket scales, trolley handles, refrigerator and freezer handles, and keyboards. In total, 13 (4.3%) surfaces were positive for SARS-CoV-2 RNA contamination, with shopping trolley handles being the most frequently contaminated. This study showed that contamination in public spaces can occur, so we remark the importance to adopt adequate preventive measures, including environment ventilation, careful surfaces sanitation, hand hygiene, and correct usage of masks, to reduce the likelihood of virus transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Control de Enfermedades Transmisibles , Humanos , ARN Viral , Supermercados
18.
Artículo en Inglés | MEDLINE | ID: mdl-34574734

RESUMEN

Serratia marcescens (SM) is a Gram-negative bacterium that is frequently found in the environment. Since 1913, when its pathogenicity was first demonstrated, the number of infections caused by SM has increased. There is ample evidence that SM causes nosocomial infections in immunocompromised or critically ill patients admitted to the intensive care units (ICUs), but also in newborns admitted to neonatal ICUs (NICUs). In this study, we evaluated the possible genetic correlation by PFGE between clinical and environmental SM strains from NICU and ICU and compared the genetic profile of clinical strains with strains isolated from patients admitted to other wards of the same hospital. We found distinct clonally related groups of SM strains circulating among different wards of a large university hospital. In particular, the clonal relationship between clinical and environmental strains in NICU and ICU 1 was highlighted. The identification of clonal relationships between clinical and environmental strains in the wards allowed identification of the epidemic and rapid implementation of adequate measures to stop the spread of SM.


Asunto(s)
Infección Hospitalaria , Infecciones por Serratia , Infección Hospitalaria/epidemiología , Brotes de Enfermedades , Electroforesis en Gel de Campo Pulsado , Humanos , Recién Nacido , Unidades de Cuidado Intensivo Neonatal , Infecciones por Serratia/epidemiología , Serratia marcescens/genética
19.
Environ Res ; 202: 111649, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34252427

RESUMEN

Legionellosis is a severe pneumonia caused by the inhalation of aerosols containing Legionella, Gram-negative bacteria present in the water systems of touristic-recreational facilities. The purpose of this study was to develop a scoring tool to predict the risk of both environmental contamination and Legionnaires' disease cases in such facilities in the Apulia region of southern Italy. We analyzed 47 structural and management parameters/risk factors related to the buildings, water systems, and air conditioning at the facilities. A Poisson regression model was used to compute an overall risk score for each facility with respect to three outcomes: water samples positive for Legionella (risk score range: 7-54), water samples positive for Legionella with an average load exceeding 1000 colony-forming units per liter (CFU/L) (risk score range: 22-179,871), and clinical cases of Legionnaire's disease (risk score range: 6-31). The cut-off values for three outcomes were determined by receiver operating characteristic curves (first outcome, samples positive for Legionella in a touristic-recreational facility: 19; second outcome, samples positive for Legionella in a touristic-recreational facility with an average load exceeding 1000 CFU/L: 2062; third outcome, clinical cases of Legionnaire's disease in a touristic-recreational facility: 22). Above these values, there was a significant probability of observing the outcome. We constructed this predictive model using 70% of a large dataset (18 years of clinical and environmental surveillance) and tested the model on the remaining 30% of the dataset to demonstrate its reliability. Our model enables the assessment of risk for a touristic facility and the creation of a conceptual framework to link the risk analysis with prevention measures.


Asunto(s)
Legionella pneumophila , Legionella , Legionelosis , Enfermedad de los Legionarios , Humanos , Legionelosis/epidemiología , Enfermedad de los Legionarios/epidemiología , Reproducibilidad de los Resultados , Medición de Riesgo , Microbiología del Agua
20.
Artículo en Inglés | MEDLINE | ID: mdl-33801099

RESUMEN

A Coronavirus disease (COVID-19), caused by a new virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spreads via direct contact through droplets produced by infected individuals. The transmission of this virus can also occur via indirect contact if objects and surfaces are contaminated by secretions from individuals with COVID-19 or asymptomatic carriers. Environmental contamination with SARS-CoV-2 is high in hospital settings; on the contrary, surface contamination in non-healthcare settings is still poorly studied. In this study, the presence of SARS-CoV-2 on the surfaces of 20 tourist-recreational facilities was investigated by performing a total of 100 swabs on surfaces, including refrigerator handles, handrails, counters, tables, and bathroom access doors. Six (6%) swabs from four (20%) tourist-recreational facilities tested positive for SARS-CoV-2; the surfaces that were involved were toilet door handles, refrigerator handles, handrails, and bar counters. This study highlights that SARS-CoV-2 is also present in non-healthcare environments; therefore, in order to limit this worrying pandemic, compliance with behavioral rules and the adoption of preventive and protective measures are of fundamental importance not only in healthcare or work environments but also in life environments.


Asunto(s)
COVID-19 , Infecciones por Coronavirus , Humanos , Italia/epidemiología , Pandemias , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...