Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FASEB J ; 30(9): 3011-25, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27178322

RESUMEN

Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.


Asunto(s)
Proteínas Bacterianas/metabolismo , Células Epiteliales/microbiología , Pseudomonas aeruginosa/fisiología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Mutación , Mucosa Respiratoria/citología , Sistema Respiratorio
2.
PLoS One ; 11(4): e0153665, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27092946

RESUMEN

In epithelia, Cl- channels play a prominent role in fluid and electrolyte transport. Of particular importance is the cAMP-dependent cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) with mutations of the CFTR encoding gene causing cystic fibrosis. The bulk transepithelial transport of Cl- ions and electrolytes needs however to be coupled to an increase in K+ conductance in order to recycle K+ and maintain an electrical driving force for anion exit across the apical membrane. In several epithelia, this K+ efflux is ensured by K+ channels, including KCa3.1, which is expressed at both the apical and basolateral membranes. We show here for the first time that CFTR and KCa3.1 can physically interact. We first performed a two-hybrid screen to identify which KCa3.1 cytosolic domains might mediate an interaction with CFTR. Our results showed that both the N-terminal fragment M1-M40 of KCa3.1 and part of the KCa3.1 calmodulin binding domain (residues L345-A400) interact with the NBD2 segment (G1237-Y1420) and C- region of CFTR (residues T1387-L1480), respectively. An association of CFTR and F508del-CFTR with KCa3.1 was further confirmed in co-immunoprecipitation experiments demonstrating the formation of immunoprecipitable CFTR/KCa3.1 complexes in CFBE cells. Co-expression of KCa3.1 and CFTR in HEK cells did not impact CFTR expression at the cell surface, and KCa3.1 trafficking appeared independent of CFTR stimulation. Finally, evidence is presented through cross-correlation spectroscopy measurements that KCa3.1 and CFTR colocalize at the plasma membrane and that KCa3.1 channels tend to aggregate consequent to an enhanced interaction with CFTR channels at the plasma membrane following an increase in intracellular Ca2+ concentration. Altogether, these results suggest 1) that the physical interaction KCa3.1/CFTR can occur early during the biogenesis of both proteins and 2) that KCa3.1 and CFTR form a dynamic complex, the formation of which depends on internal Ca2+.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Mapas de Interacción de Proteínas/fisiología , Calcio/metabolismo , Línea Celular , Membrana Celular/metabolismo , Canales de Cloruro/metabolismo , Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Epitelio/metabolismo , Humanos , Transporte Iónico/fisiología , Mutación/genética , Potasio/metabolismo , Unión Proteica/fisiología
3.
Respir Res ; 16: 100, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26335442

RESUMEN

BACKGROUND: Extensive alveolar epithelial injury and remodelling is a common feature of acute lung injury and acute respiratory distress syndrome (ARDS) and it has been established that epithelial regeneration, and secondary lung oedema resorption, is crucial for ARDS resolution. Much evidence indicates that K(+) channels are regulating epithelial repair processes; however, involvement of the KCa3.1 channels in alveolar repair has never been investigated before. RESULTS: Wound-healing assays demonstrated that the repair rates were increased in primary rat alveolar cell monolayers grown on a fibronectin matrix compared to non-coated supports, whereas an anti-ß1-integrin antibody reduced it. KCa3.1 inhibition/silencing impaired the fibronectin-stimulated wound-healing rates, as well as cell migration and proliferation, but had no effect in the absence of coating. We then evaluated a putative relationship between KCa3.1 channel and the migratory machinery protein ß1-integrin, which is activated by fibronectin. Co-immunoprecipitation and immunofluorescence experiments indicated a link between the two proteins and revealed their cellular co-distribution. In addition, we demonstrated that KCa3.1 channel and ß1-integrin membrane expressions were increased on a fibronectin matrix. We also showed increased intracellular calcium concentrations as well as enhanced expression of TRPC4, a voltage-independent calcium channel belonging to the large TRP channel family, on a fibronectin matrix. Finally, wound-healing assays showed additive effects of KCa3.1 and TRPC4 inhibitors on alveolar epithelial repair. CONCLUSION: Taken together, our data demonstrate for the first time complementary roles of KCa3.1 and TRPC4 channels with extracellular matrix and ß1-integrin in the regulation of alveolar repair processes.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Integrina beta1/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Alveolos Pulmonares/metabolismo , Cicatrización de Heridas , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología , Animales , Movimiento Celular , Proliferación Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Fibronectinas/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Masculino , Bloqueadores de los Canales de Potasio/farmacología , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología , Interferencia de ARN , Ratas Sprague-Dawley , Transducción de Señal , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Factores de Tiempo , Transfección , Cicatrización de Heridas/efectos de los fármacos
4.
Eur Respir J ; 45(6): 1590-602, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25792634

RESUMEN

The epithelial response to bacterial airway infection, a common feature of lung diseases such as chronic obstructive pulmonary disease and cystic fibrosis, has been extensively studied. However, its impact on cystic fibrosis transmembrane conductance regulator (CFTR) channel function is not clearly defined. Our aims were, therefore, to evaluate the effect of Pseudomonas aeruginosa on CFTR function and expression in non-cystic fibrosis airway epithelial cells, and to investigate its impact on ΔF508-CFTR rescue by the VRT-325 corrector in cystic fibrosis cells. CFTR expression/maturation was evaluated by immunoblotting and its function by short-circuit current measurements. A 24-h exposure to P. aeruginosa diffusible material (PsaDM) reduced CFTR currents as well as total and membrane protein expression of the wildtype (wt) CFTR protein in CFBE-wt cells. In CFBE-ΔF508 cells, PsaDM severely reduced CFTR maturation and current rescue induced by VRT-325. We also confirmed a deleterious impact of PsaDM on wt-CFTR currents in non-cystic fibrosis primary airway cells as well as on the rescue of ΔF508-CFTR function induced by VRT-325 in primary cystic fibrosis cells. These findings show that CFTR function could be impaired in non-cystic fibrosis patients infected by P. aeruginosa. Our data also suggest that CFTR corrector efficiency may be affected by infectious components, which should be taken into account in screening assays of correctors.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Infecciones por Pseudomonas/metabolismo , ARN Mensajero/metabolismo , Mucosa Respiratoria/metabolismo , Células Cultivadas , Fibrosis Quística/complicaciones , Fibrosis Quística/microbiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales/microbiología , Humanos , Piperazinas/farmacología , Infecciones por Pseudomonas/complicaciones , Pseudomonas aeruginosa , Quinazolinas/farmacología , Mucosa Respiratoria/citología , Mucosa Respiratoria/microbiología , Adulto Joven
5.
Int J Oncol ; 44(3): 838-48, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24366043

RESUMEN

K+ channels, which are overexpressed in several cancers, have been identified as regulators of cell proliferation and migration, key processes in cancer development/propagation. Their role in lung cancer has not been studied extensively; but we showed previously that KvLQT1 channels are involved in cell migration, proliferation and repair of normal lung epithelial cells. We now investigated the role of these channels in lung cancer cell lines and their expression levels in human lung adenocarcinoma (AD) tissues. First, we observed that the wound-healing rates of A549 lung adenocarcinoma cell monolayers were reduced by clofilium and chromanol or after silencing with KvLQT1-specific siRNA. Dose-dependent decrease of A549 cell growth and cell accumulation in G0/G1 phase were seen after KvLQT1 inhibition. Clofilium also affected 2D and 3D migration of A549 cells. Similarly, H460 cell growth, migration and wound healing were diminished by this drug. Because K+ channel overexpression has been encountered in some cancers, we assessed KvLQT1 expression levels in tumor tissues from patients with lung AD. KvLQT1 protein expression in tumor samples was increased by 1.5- to 7-fold, compared to paired non-neoplastic tissues, in 17 of 26 patients. In summary, our data reveal that KvLQT1 channel blockade efficiently reduces A549 and H460 cell proliferation and migration. Moreover, KvLQT1 overexpression in AD samples suggests that it could be a potential therapeutic target in lung cancer.


Asunto(s)
Adenocarcinoma/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Canales de Potasio KCNQ/genética , Neoplasias Pulmonares/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Carcinogénesis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Canales de Potasio KCNQ/biosíntesis , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Compuestos de Amonio Cuaternario/administración & dosificación , ARN Interferente Pequeño/genética , Cicatrización de Heridas/genética
6.
Blood ; 120(13): 2745-56, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-22898603

RESUMEN

DEP-1/CD148 is a receptor-like protein tyrosine phosphatase with antiproliferative and tumor-suppressive functions. Interestingly, it also positively regulates Src family kinases in hematopoietic and endothelial cells, where we showed it promotes VE-cadherin-associated Src activation and endothelial cell survival upon VEGF stimulation. However, the molecular mechanism involved and its biologic functions in endothelial cells remain ill-defined. We demonstrate here that DEP-1 is phosphorylated in a Src- and Fyn-dependent manner on Y1311 and Y1320, which bind the Src SH2 domain. This allows DEP-1-catalyzed dephosphorylation of Src inhibitory Y529 and favors the VEGF-induced phosphorylation of Src substrates VE-cadherin and Cortactin. Accordingly, RNA interference (RNAi)-mediated knockdown of DEP-1 or expression of DEP-1 Y1311F/Y1320F impairs Src-dependent biologic responses mediated by VEGF including permeability, invasion, and branching capillary formation. In addition, our work further reveals that above a threshold expression level, DEP-1 can also dephosphorylate Src Y418 and attenuate downstream signaling and biologic responses, consistent with the quiescent behavior of confluent endothelial cells that express the highest levels of endogenous DEP-1. Collectively, our findings identify the VEGF-dependent phosphorylation of DEP-1 as a novel mechanism controlling Src activation, and show this is essential for the proper regulation of permeability and the promotion of the angiogenic response.


Asunto(s)
Capilares/metabolismo , Permeabilidad de la Membrana Celular , Endotelio Vascular/citología , Neovascularización Patológica , Tirosina/metabolismo , Familia-src Quinasas/metabolismo , Antígenos CD/metabolismo , Western Blotting , Cadherinas/metabolismo , Adhesión Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Cortactina/metabolismo , Endotelio Vascular/metabolismo , Técnica del Anticuerpo Fluorescente , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inmunoprecipitación , Mutación/genética , Invasividad Neoplásica , Fosforilación , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Eur Respir J ; 40(6): 1390-400, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22496330

RESUMEN

Airway damage and remodelling are important components of lung pathology progression in cystic fibrosis (CF). Although repair mechanisms are engaged to restore the epithelial integrity, these processes are obviously insufficient to maintain lung function in CF airways. Our aims were therefore to study how the basic cystic fibrosis transmembrane conductance regulator (CFTR) defect could impact epithelial wound healing and to determine if CFTR correction could improve it. Wound-healing experiments, as well as cell migration and proliferation assays, were performed to study the early phases of epithelial repair in human CF and non-CF airway cells. CFTR function was evaluated using CFTR small interferring (si)RNA and inhibitor GlyH101 in non-CF cells, and conversely after CFTR rescue with the CFTR corrector VRT-325 in CF cells. Wound-healing experiments first showed that airway cells from CF patients repaired slower than non-CF cells. CFTR inhibition or silencing in non-CF primary airway cells significantly inhibited wound closure. GlyH101 also decreased cell migration and proliferation. Interestingly, wild-type CFTR transduction in CF airway cell lines or CFTR correction with VRT-325 in CFBE-ΔF508 and primary CF bronchial monolayers significantly improved wound healing. Altogether our results demonstrated that functional CFTR plays a critical role in wound repair, and CFTR correction may represent a novel strategy to promote the airway repair processes in CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Adulto , Bronquios/metabolismo , Línea Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Epitelio/metabolismo , Humanos , Pulmón/microbiología , Enfermedades Pulmonares/microbiología , Trasplante de Pulmón/métodos , Mutación , ARN Interferente Pequeño/metabolismo , Regeneración , Mucosa Respiratoria/metabolismo , Factores de Tiempo , Cicatrización de Heridas
8.
Am J Physiol Lung Cell Mol Physiol ; 301(6): L945-55, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21908587

RESUMEN

Chronic infection and inflammation have been associated with progressive airway epithelial damage in patients with cystic fibrosis (CF). However, the effect of inflammatory products on the repair capacity of respiratory epithelia is unclear. Our objective was to study the regulation of repair mechanisms by tumor necrosis factor-α (TNF-α), a major component of inflammation in CF, in a model of mechanical wounding, in two bronchial cell lines, non-CF NuLi and CF CuFi. We observed that TNF-α enhanced the NuLi and CuFi repair rates. Chronic exposure (24-48 h) to TNF-α augmented this stimulation as well as the migration rate during repair. The cellular mechanisms involved in this stimulation were then evaluated. First, we discerned that TNF-α induced metalloproteinase-9 release, epidermal growth factor (EGF) shedding, and subsequent EGF receptor transactivation. Second, TNF-α-induced stimulation of the NuLi and CuFi wound-closure rates was prevented by GM6001 (metalloproteinase inhibitor), EGF antibody (to titrate secreted EGF), and EGF receptor tyrosine kinase inhibitors. Furthermore, we recently reported a relationship between the EGF response and K(+) channel function, both controlling bronchial repair. We now show that TNF-α enhances KvLQT1 and K(ATP) currents, while their inhibition abolishes TNF-α-induced repair stimulation. These results indicate that the effect of TNF-α is mediated, at least in part, through EGF receptor transactivation and K(+) channel stimulation. In contrast, cell proliferation during repair was slowed by TNF-α, suggesting that TNF-α could exert contrasting actions on repair mechanisms of CF airway epithelia. Finally, the stimulatory effect of TNF-α on airway wound repair was confirmed on primary airway epithelial cells, from non-CF and CF patients.


Asunto(s)
Fibrosis Quística/patología , Células Epiteliales/patología , Factor de Necrosis Tumoral alfa/farmacología , Bronquiolos/metabolismo , Bronquiolos/patología , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibrosis Quística/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/fisiología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Receptores ErbB/agonistas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Potenciales de la Membrana , Fosforilación , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Cultivo Primario de Células , Compuestos de Amonio Cuaternario/farmacología , Activación Transcripcional , Factor de Necrosis Tumoral alfa/fisiología
9.
Med Sci (Paris) ; 25(4): 391-7, 2009 Apr.
Artículo en Francés | MEDLINE | ID: mdl-19409192

RESUMEN

Transcripts of more than 30 different K(+) channels have been detected in the respiratory epithelium lining airways and alveoli. These channels belong to the 3 main classes of K(+) channels, i.e. i) voltage-dependent or calcium-activated, 6 transmembrane segments (TM), ii) 2-pores 4-TM and iii) inward-rectified 2-TM channels. The physiological and functional significance of this high molecular diversity of lung epithelial K(+) channels is not well understood. Surprisingly, relatively few studies are focused on K(+) channel function in lung epithelial physiology. Nevertheless, several studies have shown that KvLQT1, KCa and K(ATP) K(+) channels play a crucial role in ion and fluid transport, contributing to the control of airway and alveolar surface liquid composition and volume. K(+) channels are involved in other key functions, such as O(2) sensing or the capacity of the respiratory epithelia to repair after injury. This mini-review aims to discuss potential functions of lung K(+) channels.


Asunto(s)
Pulmón/citología , Canales de Potasio/fisiología , Potasio/fisiología , Animales , Transporte Biológico , Líquidos Corporales/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transporte Iónico/fisiología , Pulmón/metabolismo , Enfermedades Pulmonares/metabolismo , Neumonía/metabolismo , Potasio/metabolismo , Canales de Potasio/clasificación , Canales de Potasio/genética , Intercambio Gaseoso Pulmonar/fisiología , Surfactantes Pulmonares/metabolismo , Regeneración/fisiología , Transducción de Señal/fisiología
10.
Am J Physiol Cell Physiol ; 296(2): C285-95, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19052260

RESUMEN

The vectorial transport of ions and water across epithelial cells depends to a large extent on the coordination of the apical and basolateral ion fluxes with energy supply. In this work we provide the first evidence for a regulation by the 5'-AMP-activated protein kinase (AMPK) of the calcium-activated potassium channel KCa3.1 expressed at the basolateral membrane of a large variety of epithelial cells. Inside-out patch-clamp experiments performed on human embryonic kidney (HEK) cells stably transfected with KCa3.1 first revealed a decrease in KCa3.1 activity following the internal addition of AMP at a fixed ATP concentration. This effect was dose dependent with half inhibition at 140 muM AMP in 1 mM ATP. Evidence for an interaction between the COOH-terminal region of KCa3.1 and the gamma1-subunit of AMPK was next obtained by two-hybrid screening and pull-down experiments. Our two-hybrid analysis confirmed in addition that the amino acids extending from Asp(380) to Ala(400) in COOH-terminal were essential for the interaction AMPK-gamma1/KCa3.1. Inside-out experiments on cells coexpressing KCa3.1 with the dominant negative AMPK-gamma1-R299G mutant showed a reduced sensitivity of KCa3.1 to AMP, arguing for a functional link between KCa3.1 and the gamma1-subunit of AMPK. More importantly, coimmunoprecipitation experiments carried out on bronchial epithelial NuLi cells provided direct evidence for the formation of a KCa3.1/AMPK-gamma1 complex at endogenous AMPK and KCa3.1 expression levels. Finally, treating NuLi monolayers with the membrane permeant AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) caused a significant decrease of the KCa3.1-mediated short-circuit currents, an effect reversible by coincubation with the AMPK inhibitor Compound C. These observations argue for a regulation of KCa3.1 by AMPK in a functional epithelium through protein/protein interactions involving the gamma1-subunit of AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Células Epiteliales/enzimología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Activación del Canal Iónico , Mucosa Respiratoria/enzimología , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Polaridad Celular , Células Cultivadas , Activación Enzimática , Activadores de Enzimas/farmacología , Células Epiteliales/efectos de los fármacos , Humanos , Inmunoprecipitación , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Activación del Canal Iónico/efectos de los fármacos , Transporte Iónico , Potenciales de la Membrana , Mutación , Técnicas de Placa-Clamp , Unión Proteica , Proteínas Recombinantes/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Ribonucleótidos/farmacología , Transfección , Técnicas del Sistema de Dos Híbridos
11.
Am J Physiol Lung Cell Mol Physiol ; 296(2): L145-55, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19060226

RESUMEN

Multiple K(+) channels are expressed in the respiratory epithelium lining airways and alveoli. Of the three main classes [1) voltage-dependent or Ca(2+)-activated, 6-transmembrane domains (TMD), 2) 2-pores 4-TMD, and 3) inward-rectified 2-TMD K(+) channels], almost 40 different transcripts have already been detected in the lung. The physiological and functional significance of this high molecular diversity of lung epithelial K(+) channels is intriguing. As detailed in the present review, K(+) channels are located at both the apical and basolateral membranes in the respiratory epithelium, where they mediate K(+) currents of diverse electrophysiological and regulatory properties. The main recognized function of K(+) channels is to control membrane potential and to maintain the driving force for transepithelial ion and liquid transport. In this manner, KvLQT1, KCa and K(ATP) channels, for example, contribute to the control of airway and alveolar surface liquid composition and volume. Thus, K(+) channel activation has been identified as a potential therapeutic strategy for the resolution of pathologies characterized by ion transport dysfunction. K(+) channels are also involved in other key functions in lung physiology, such as oxygen-sensing, inflammatory responses and respiratory epithelia repair after injury. The purpose of this review is to summarize and discuss what is presently known about the molecular identity of lung K(+) channels with emphasis on their role in lung epithelial physiology.


Asunto(s)
Canales de Potasio/fisiología , Alveolos Pulmonares/fisiología , Mucosa Respiratoria/fisiología , Animales , Humanos
12.
Am J Physiol Lung Cell Mol Physiol ; 295(5): L866-80, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18757521

RESUMEN

Severe lesions of airway epithelia are observed in cystic fibrosis (CF) patients. The regulatory mechanisms of cell migration and proliferation processes, involved in the repair of injured epithelia, then need to be better understood. A model of mechanical wounding of non-CF (NuLi) and CF (CuFi) bronchial monolayers was employed to study the repair mechanisms. We first observed that wound repair, under paracrine and autocrine EGF control, was slower (up to 33%) in CuFi than in NuLi. Furthermore, EGF receptor (EGFR) activation, following wounding, was lower in CuFi than in NuLi monolayers. Cell proliferation and migration assays indicated a similar rate of proliferation in both cell lines but with reduced (by 25%) CuFi cell migration. In addition, cell migration experiments performed in the presence of conditioned medium, collected from NuLi and CuFi wounded bronchial monolayers, suggested a defect in EGF/EGFR signaling in CF cells. We (49) recently demonstrated coupling between the EGF response and K(+) channel function, which is crucial for EGF-stimulated alveolar repair. In CuFi cells, lower EGF/EGFR signaling was accompanied by a 40-70% reduction in K(+) currents and KvLQT1, ATP-sensitive potassium (K(ATP)), and Ca(2+)-activated K(+) (KCa3.1) channel expression. In addition, EGF-stimulated bronchial wound healing, cell migration, and proliferation were severely decreased by K(+) channel inhibitors. Finally, acute CFTR inhibition failed to reduce wound healing, EGF secretion, and K(+) channel expression in NuLi. In summary, the delay in CuFi wound healing could be due to diminished EGFR signaling coupled with lower K(+) channel function, which play a crucial role in bronchial repair.


Asunto(s)
Bronquios/patología , Fibrosis Quística/patología , Factor de Crecimiento Epidérmico/metabolismo , Epitelio/patología , Canales de Potasio/metabolismo , Cicatrización de Heridas , Bronquios/metabolismo , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Factor de Crecimiento Epidérmico/farmacología , Epitelio/efectos de los fármacos , Receptores ErbB/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
13.
Am J Physiol Lung Cell Mol Physiol ; 293(4): L870-82, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17631610

RESUMEN

Several respiratory diseases are associated with extensive damage of lung epithelia, and the regulatory mechanisms involved in their regeneration are not clearly defined. Growth factors released by epithelial cells or fibroblasts from injured lungs are important regulators of alveolar repair by stimulating cell motility, proliferation, and differentiation. In addition, K(+) channels regulate cell proliferation/migration and are coupled with growth factor signaling in several tissues. We decided to explore the hypothesis, never investigated before, that K(+) could play a prominent role in alveolar repair. We employed a model of mechanical wounding of rat alveolar type II epithelia, in primary culture, to study their response to injury. Wound healing was suppressed by one-half upon epidermal growth factor (EGF) titration with EGF-antibody (Ab) or erbB1/erbB2 tyrosine-kinase inhibition with AG-1478/AG-825. The addition of exogenous EGF slightly stimulated the alveolar wound healing and enhanced, by up to five times, alveolar cell migration measured in a Boyden-type chamber. Conditioned medium collected from injured alveolar monolayers also stimulated cell migration; this effect was abolished in the presence of EGF-Ab. The impact of K(+) channel modulators was examined in basal and EGF-stimulated conditions. Wound healing was stimulated by pinacidil, an ATP-dependent K(+) channel (K(ATP)) activator, which also increased cell migration, by twofold, in basal conditions and potentiated the stimulatory effect of EGF. K(ATP) or KvLQT1 inhibitors (glibenclamide, clofilium) reduced EGF-stimulated wound healing, cell migration, and proliferation. Finally, EGF stimulated K(ATP) and KvLQT1 currents and channel expression. In summary, stimulation of K(+) channels through autocrine activation of EGF receptors could play a crucial role in lung epithelia repair processes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio/metabolismo , Alveolos Pulmonares/lesiones , Cicatrización de Heridas , Animales , Anticuerpos/farmacología , Comunicación Autocrina , Benzotiazoles/farmacología , Transporte Biológico/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Sinergismo Farmacológico , Conductividad Eléctrica , Inhibidores Enzimáticos/farmacología , Factor de Crecimiento Epidérmico/inmunología , Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/patología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Canal de Potasio KCNQ1/efectos de los fármacos , Masculino , Pinacidilo/farmacología , Potasio/metabolismo , Canales de Potasio/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Alveolos Pulmonares/patología , Alveolos Pulmonares/fisiopatología , Quinazolinas , Ratas , Ratas Sprague-Dawley , Receptor ErbB-2/antagonistas & inhibidores , Tirfostinos/farmacología , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA