Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Eng ; 69(11): 3345-3355, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35439122

RESUMEN

Magnetic Resonance Elastography (MRE) is a developing imaging technique that enables non-invasive estimation of tissue mechanical properties through the combination of induced mechanical displacements in the tissue and Magnetic Resonance Imaging (MRI). The mechanical drivers necessary to produce shear waves in the tissue have been a focus of engineering effort in the development and refinement of MRE. The potential targeting of smaller and stiffer tissues calls for increases in actuation frequency and refinement of mechanical driver positioning. Furthermore, the anisotropic nature of soft tissues results in driver position related changes in observed displacement wave patterns. These challenges motivate the investigation and development of the concept of active MRE driver positioning through visual servoing under MR imaging. OBJECTIVE: This work demonstrates the initial prototype of an MRE driver positioning system, allowing capture of displacement wave patterns from various mechanical vibration loading angles under different vibration frequencies through MR imaging. METHODS: Three different configurations of the MRE driver positioning robot are tested with an intervertebral disc (IVD) shaped gel phantom. RESULTS: Both the octahedral shear stress signal to noise ratio (OSS-SNR) and estimated stiffness show statistically significant dependence on driver configuration in each of the three phantom IVD regions. CONCLUSION: This dependence demonstrates that driver configuration is a critical factor in MRE, and that the developed robot is capable of producing a range of configurations. SIGNIFICANCE: This work presents the first demonstration of an active, imaging guided MRE driver positioning system, with significance for the future application of MRE to a wider range of human tissues.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Robótica , Humanos , Diagnóstico por Imagen de Elasticidad/métodos , Fantasmas de Imagen , Relación Señal-Ruido , Imagen por Resonancia Magnética/métodos
2.
Curr Protoc ; 2(3): e379, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35286023

RESUMEN

Magnetic resonance elastography (MRE) is a technique for determining the mechanical response of soft materials using applied harmonic deformation of the material and a motion-sensitive magnetic resonance imaging sequence. This technique can elucidate significant information about the health and development of human tissue such as liver and brain, and has been used on phantom models (e.g., agar, silicone) to determine their suitability for use as a mechanical surrogate for human tissues in experimental models. The applied harmonic deformation used in MRE is generated by an actuator, transmitted in bursts of a specified duration, and synchronized with the magnetic resonance signal excitation. These actuators are most often a pneumatic design (common for human tissues or phantoms) or a piezoelectric design (common for small animal tissues or phantoms). Here, we describe how to design and assemble both a pneumatic and a piezoelectric MRE actuator for research purposes. For each of these actuator types, we discuss displacement requirements, end-effector options and challenges, electronics and electronic-driving requirements and considerations, and full MRE implementation. We also discuss how to choose the actuator type, size, and power based on the intended material and use. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Design, construction, and implementation of a convertible pneumatic MRE actuator for use with tissues and phantom models Basic Protocol 2: Design, construction, and implementation of a piezoelectric MRE actuator for localized excitation in phantom models.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Animales , Encéfalo/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Fantasmas de Imagen
3.
J Neuroeng Rehabil ; 19(1): 23, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189922

RESUMEN

BACKGROUND: Many older Americans suffer from long-term upper limb dysfunction, decreased grip strength, and/or a reduced ability to hold objects due to injuries and a variety of age-related illnesses. The objective of this study was to design and build a five-fingered powered assistive exoskeleton for the human hand, and to validate its ability to augment the gripping and pinching efforts of the wearer and assist in performing ADLs. METHODS: The exoskeleton device was designed using CAD software and 3-D printed in ABS. Each finger's movement efforts were individually monitored by a force sensing resistor at each fingertip, and proportionally augmented via the microcontroller-based control scheme, linear actuators, and rigid exoskeleton structure. The force production of the device and the force augmenting capability were assessed on ten healthy individuals with one 5-digit grasping test, three pinching tests, and two functional tests. RESULTS: Use of the device significantly decreased the forearm muscle activity necessary to maintain a grasping effort (67%, p < 0.001), the larger of two pinching efforts (30%, p < 0.05), and the palmer pinching effort (67%, p < 0.001); however, no benefit by wearing the device was identified while maintaining a minimal pinching effort or attempting one of the functional tests. CONCLUSION: The exoskeleton device allowed subjects to maintain independent control of each digit, and while wearing the exoskeleton, in both the unpowered and powered states, subjects were able to grasp, hold, and move objects such as a water bottle, bag, smartphone, or dry-erase marker.


Asunto(s)
Dispositivo Exoesqueleto , Actividades Cotidianas , Anciano , Fenómenos Biomecánicos , Dedos/fisiología , Mano , Fuerza de la Mano , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...