Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Parasit Vectors ; 17(1): 149, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515191

RESUMEN

BACKGROUND: Anopheles gambiae continues to be widespread and an important malaria vector species complex in Uganda. New approaches to malaria vector control are being explored including population suppression through swarm reductions and genetic modification involving gene drives. Designing and evaluating these new interventions require good understanding of the biology of the target vectors. Anopheles mosquito swarms have historically been hard to locate in Uganda and therefore have remained poorly characterized. In this study we sought to identify and characterize An. gambiae s.l mosquito swarms in three study sites of high An. gambiae s.l prevalence within Central Uganda. METHODS: Nine sampling visits were made to three villages over a 2-year period. Sampling targeted both wet and dry seasons and was done for 2 days per village during each trip, using sweep nets. All swarm data were analysed using the JMP 14 software (SAS Institute, Inc., Cary, NC, USA), parametrically or non-parametrically as appropriate. RESULTS: Most of the An. gambiae s.s. swarms sampled during this study were single-species swarms. However, some mixed An. gambiae s.s. and Culex spp. mosquito swarms were also observed. Swarms were larger in the wet season than in the dry season. Mean swarm height ranged from 2.16 m to 3.13 m off the ground and only varied between villages but not by season. Anopheles gambiae mosquitoes were present in all three villages, preferred to swarm over bare ground markers, and could be effectively sampled by field samplers. CONCLUSIONS: This study demonstrated that An. gambiae s.l swarms could be effectively located and sampled in South Central Uganda and provided in-depth descriptions of hitherto poorly understood aspects of An. gambiae local swarm characteristics. Swarms were found close to inhabited households and were greater in size and number during the rainy season. Anopheles gambiae s.s swarms were significantly associated with bare ground markers and were sometimes at heights over 4 m above the ground, showing a necessity to develop tools suitable for swarm sampling at these heights. While mixed species swarms have been reported before elsewhere, this is the first documented instance of mixed genus swarms found in Uganda and should be studied further as it could have implications for swarm sampling explorations where multiple species of mosquitoes exist.


Asunto(s)
Anopheles , Malaria , Animales , Anopheles/genética , Mosquitos Vectores , Uganda , Estaciones del Año
2.
J Med Entomol ; 60(6): 1278-1287, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37738317

RESUMEN

Anopheles gambiae and Anopheles coluzzii, often found in sympatry and synchronous, have undergone a premating reproductive isolation across their distribution range. However, in the Western coast of Africa, unexpected hybridization zones have been observed, and little is known about swarming behavior of these cryptic taxa. Here, we characterized the swarming behavior of An. coluzzii and An. gambiae to investigate its role in the high hybridization level in Senegal. The study was conducted in the south and central Senegal during the 2018 rainy season. Mating swarms of malaria vectors were surveyed at sunset and collected using an insect net. Meanwhile, indoor resting populations of malaria vectors were collected by pyrethrum spray catches. Upon collection, specimens were identified morphologically, and then members of the An. gambiae complex were identified at the species level by polymerase chain reaction (PCR). An. gambiae swarmed mainly over bare ground, whereas An. coluzzii were found swarming above various objects creating a dark-light contrast with the bare ground. The swarms height varied from 0.5 to 2.5 m. Swarming starting time was correlated with sunset whatever the months for both species, and generally lasted about 10 min. No mixed swarm of An. gambiae and An. coluzzii was found even in the high hybridization area. These results indicated a premating isolation between An. coluzzii and An. gambiae. However, the high hybridization rate in the sympatric area suggests that heterogamous mating is occurring, thus stressing the need for further extensive studies.


Asunto(s)
Anopheles , Malaria , Animales , Anopheles/genética , Senegal , Mosquitos Vectores , Hibridación Genética
3.
Insects ; 14(5)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37233095

RESUMEN

Mosquito vectors captured at a crime scene are forensically valuable since they feed on human blood, and hence, human DNA can be recovered to help identify the victim and/or the suspect. This study investigated the validity of obtaining the human short tandem repeats (STRs) profile from mixed blood meals of the mosquito, Culex pipiens L. (Diptera, Culicidae). Thus, mosquitoes were membrane-feed on blood from six different sources: a human male, a human female, mixed human male-female blood, mixed human male-mouse blood, mixed human female-mouse blood, and mixed human male-female-mouse blood. DNA was extracted from mosquito blood meals at 2 h intervals up to 72 h post-feeding to amplify 24 human STRs. Data showed that full DNA profiles could be obtained for up to 12 h post-feeding, regardless of the type of blood meal. Complete and partial DNA profiles were obtained up to 24 h and 36 h post-feeding, respectively. The frequencies of STR loci decreased over time after feeding on mixed blood until they became weakly detectable at 48 h post-feeding. This may indicate that a blood meal of human blood mixed with animal blood would contribute to maximizing DNA degradation and thus affects STR identification beyond 36 h post-feeding. These results confirm the feasibility of human DNA identification from mosquito blood meals, even if it is mixed with other types of non-human blood, for up to 36 h post-feeding. Therefore, blood-fed mosquitoes found at the crime scene are forensically valuable, as it is possible to obtain intact genetic profiles from their blood meals to identify a victim, a potential offender, and/or exclude a suspect.

4.
Insect Mol Biol ; 32(1): 56-68, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36251429

RESUMEN

The development of genetically modified mosquitoes (GMM) and their subsequent field release offers innovative approaches for vector control of malaria. A non-gene drive self-limiting male-bias Ag(PMB)1 strain has been developed in a 47-year-old laboratory G3 strain of Anopheles gambiae s.l. When Ag(PMB)1 males are crossed to wild-type females, expression of the endonuclease I-PpoI during spermatogenesis causes the meiotic cleavage of the X chromosome in sperm cells, leading to fertile offspring with a 95% male bias. However, World Health Organization states that the functionality of the transgene could differ when inserted in different genetic backgrounds of Anopheles coluzzii which is currently a predominant species in several West-African countries and thus a likely recipient for a potential release of self-limiting GMMs. In this study, we introgressed the transgene from the donor Ag(PMB)1 by six serial backcrosses into two recipient colonies of An. coluzzii that had been isolated in Mali and Burkina Faso. Scans of informative Single Nucleotide Polymorphism (SNP) markers and whole-genome sequencing analysis revealed a nearly complete introgression of chromosomes 3 and X, but a remarkable genomic divergence in a large region of chromosome 2 between the later backcrossed (BC6) transgenic offspring and the recipient paternal strains. These findings suggested to extend the backcrossing breeding strategy beyond BC6 generation and increasing the introgression efficiency of critical regions that have ecological and epidemiological implications through the targeted selection of specific markers. Disregarding differential introgression efficiency, we concluded that the phenotype of the sex ratio distorter is stable in the BC6 introgressed An. coluzzii strains.


Asunto(s)
Anopheles , Femenino , Animales , Masculino , Anopheles/genética , Razón de Masculinidad , Mosquitos Vectores/genética , Semen , Transgenes
5.
Elife ; 112022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36222650

RESUMEN

The ANOSPP amplicon panel is a genus-wide targeted sequencing panel to facilitate large-scale monitoring of Anopheles species diversity. Combining information from the 62 nuclear amplicons present in the ANOSPP panel allows for a more senstive and specific species assignment than single gene (e.g. COI) barcoding, which is desirable in the light of permeable species boundaries. Here, we present NNoVAE, a method using Nearest Neighbours (NN) and Variational Autoencoders (VAE), which we apply to k-mers resulting from the ANOSPP amplicon sequences in order to hierarchically assign species identity. The NN step assigns a sample to a species-group by comparing the k-mers arising from each haplotype's amplicon sequence to a reference database. The VAE step is required to distinguish between closely related species, and also has sufficient resolution to reveal population structure within species. In tests on independent samples with over 80% amplicon coverage, NNoVAE correctly classifies to species level 98% of samples within the An. gambiae complex and 89% of samples outside the complex. We apply NNoVAE to over two thousand new samples from Burkina Faso and Gabon, identifying unexpected species in Gabon. NNoVAE presents an approach that may be of value to other targeted sequencing panels, and is a method that will be used to survey Anopheles species diversity and Plasmodium transmission patterns through space and time on a large scale, with plans to analyse half a million mosquitoes in the next five years.


Asunto(s)
Anopheles , Animales , Anopheles/genética , Burkina Faso , Gabón
6.
Sci Rep ; 12(1): 12397, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35858978

RESUMEN

Outdoor biting constitutes a major limitation of current vector control based primarily on long-lasting insecticidal nets and indoor residual spraying, both of which are indoor interventions. Consequently, malaria elimination will not be achieved unless additional tools are found to deal with the residual malaria transmission and the associated vector dynamics. In this study we tested a new vector control approach for rapidly crashing mosquito populations and disrupting malaria transmission in Africa. This method targets the previously neglected swarming and outdoor nocturnal behaviors of both male and female Anopheles mosquitoes. It involved accurate identification and targeted spraying of mosquito swarms to suppress adult malaria vector populations and their vectorial capacities. The impact of targeted spraying was compared to broadcast spraying and evaluated simultaneously. The effects of the two interventions were very similar, no significant differences between targeted spraying and broadcast spraying were found for effects on density, insemination or parity rate. However, targeted spraying was found to be significantly more effective than broadcast spraying at reducing the number of bites per person. As expected, each intervention had a highly significant impact upon all parameters measured, but the targeted swarm spraying required less insecticide.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Burkina Faso , Femenino , Humanos , Insecticidas/farmacología , Malaria/prevención & control , Masculino , Control de Mosquitos/métodos , Mosquitos Vectores
7.
Sci Rep ; 12(1): 10800, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750745

RESUMEN

The sibling species An. coluzzii and An. gambiae s.s. are major malaria vectors thought to be undergoing sympatric speciation with gene flow. In the absence of intrinsic post-zygotic isolation between the two taxa, speciation is thought possible through the association of assortative mating and genomic regions protected from gene flow by recombination suppression. Such genomic islands of speciation have been described in pericentromeric regions of the X, 2L and 3L chromosomes. Spatial swarm segregation plays a major role in assortative mating between sympatric populations of the two species and, given their importance for speciation, genes responsible for such pre-mating reproductive barriers are expected to be protected within divergence islands. In this study 2063 male and 266 female An. coluzzii and An. gambiae s.s. individuals from natural swarms in Burkina Faso, West Africa were sampled. These were genotyped at 16 speciation island SNPs, and characterized as non-hybrid individuals, F1 hybrids or recombinant F1+n backcrossed individuals. Their genotypes at each speciation island were associated with their participation in An. coluzzii and An. gambiae-like swarms. Despite extensive introgression between the two species, the X-island genotype of non-hybrid individuals (37.6%), F1 hybrids (0.1%) and F1+n recombinants (62.3%) of either sex perfectly associated to each swarm type. Associations between swarm type and the 3L and 2L speciation islands were weakened or broken down by introgression. The functional demonstration of a close association between spatial segregation behaviour and the X speciation island lends further support to sympatric speciation models facilitated by pericentric recombination suppression in this important species complex.


Asunto(s)
Anopheles , Animales , Anopheles/genética , Burkina Faso , Femenino , Humanos , Masculino , Mosquitos Vectores/genética , Simpatría , Cromosoma X/genética
8.
Nat Commun ; 13(1): 796, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145082

RESUMEN

Every year, malaria kills approximately 405,000 people in Sub-Saharan Africa, most of them children under the age of five years. In many countries, progress in malaria control has been threatened by the rapid spread of resistance to antimalarial drugs and insecticides. Novel genetic mosquito control approaches could play an important role in future integrated malaria control strategies. In July 2019, the Target Malaria consortium proceeded with the first release of hemizygous genetically-modified (GM) sterile and non-transgenic sibling males of the malaria mosquito Anopheles coluzzii in Burkina Faso. This study aimed to determine the potential fitness cost associated to the transgene and gather important information related to the dynamic of transgene-carrying mosquitoes, crucial for next development steps. Bayesian estimations confirmed that GM males had lower survival and were less mobile than their wild type (WT) siblings. The estimated male population size in Bana village, at the time of the release was 28,000 - 37,000. These results provide unique information about the fitness and behaviour of released GM males that will inform future releases of more effective strains of the A. gambiae complex.


Asunto(s)
Anopheles/genética , Infertilidad , Malaria/transmisión , Mosquitos Vectores/genética , Animales , Teorema de Bayes , Burkina Faso , Insecticidas , Masculino , Control de Mosquitos/métodos , Densidad de Población
9.
Sci Rep ; 12(1): 2206, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177630

RESUMEN

Vector-borne diseases are worldwide public health issues. Despite research focused on vectorial capacity determinants in pathogen transmitting mosquitoes, their behavioural plasticity remains poorly understood. Memory and associative learning have been linked to behavioural changes in several insect species, but their relevance in behavioural responses to pesticide vector control has been largely overlooked. In this study, female Aedes aegypti and Culex quinquefasciastus were exposed to sub-lethal doses of 5 pesticide compounds using modified World Health Organization (WHO) tube bioassays. Conditioned females, subsequently exposed to the same pesticides in WHO tunnel assays, exhibited behavioural avoidance by forgoing blood-feeding to ensure survival. Standardized resting site choice tests showed that pre-exposed females avoided the pesticides smell and choose to rest in a pesticide-free compartment. These results showed that, following a single exposure, mosquitoes can associate the olfactory stimulus of pesticides with their detrimental effects and subsequently avoid pesticide contact. Findings highlight the importance of mosquito cognition as determinants of pesticide resistance in mosquito populations targeted by chemical control.


Asunto(s)
Anopheles/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Repelentes de Insectos/farmacología , Mosquitos Vectores/efectos de los fármacos , Aedes/efectos de los fármacos , Aedes/patogenicidad , Animales , Anopheles/fisiología , Bioensayo , Culex/efectos de los fármacos , Culex/patogenicidad , Culicidae/efectos de los fármacos , Culicidae/patogenicidad , Humanos , Insecticidas/farmacología , Mosquitos Vectores/genética , Mosquitos Vectores/fisiología , Organización Mundial de la Salud
10.
Sci Rep ; 12(1): 636, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022496

RESUMEN

The mating behaviour of the malaria vector Anopheles gambiae complex is an important aspect of its reproduction biology. The success of mosquito release programmes based on genetic control of malaria crucially depends on competitive mating between both laboratory-reared and wild individuals, and populations from different localities. It is known that intrinsic and extrinsic factors can influence the mating success. This study addressed some of the knowledge gaps about factors influcencing mosquito mating success. In semi-field conditions, the study compared the mating success of three laboratory-reared and wild allopatric An. coluzzii populations originating from ecologically different locations in Burkina Faso. Overall, it was found that colonization reduced the mating competitiveness of both males and females compared to that of wild type individuals. More importly, females were more likely to mate with males of their own population of origin, be it wild or colonised, suggesting that local adaptation affected mate choice. The observations of mating behaviour of colonized and local wild populations revealed that subtle differences in behaviour lead to significant levels of population-specific mating. This is the first study to highlight the importance of local adaptation in the mating success, thereby highlighting the importance of using local strains for mass-rearing and release of An. coluzzii in vector control programmes.


Asunto(s)
Anopheles , Animales
11.
Parasit Vectors ; 14(1): 514, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620227

RESUMEN

BACKGROUND: Wild populations of Anopheles mosquitoes are generally thought to mate outdoors in swarms, although once colonized, they also mate readily inside laboratory cages. This study investigated whether the malaria vectors Anopheles funestus and Anopheles arabiensis can also naturally mate inside human dwellings. METHOD: Mosquitoes were sampled from three volunteer-occupied experimental huts in a rural Tanzanian village at 6:00 p.m. each evening, after which the huts were completely sealed and sampling was repeated at 11:00 p.m and 6 a.m. the next morning to compare the proportions of inseminated females. Similarly timed collections were done inside local unsealed village houses. Lastly, wild-caught larvae and pupae were introduced inside or outside experimental huts constructed inside two semi-field screened chambers. The huts were then sealed and fitted with exit traps, allowing mosquito egress but not entry. Mating was assessed in subsequent days by sampling and dissecting emergent adults caught indoors, outdoors and in exit traps. RESULTS: Proportions of inseminated females inside the experimental huts in the village increased from approximately 60% at 6 p.m. to approximately 90% the following morning despite no new mosquitoes entering the huts after 6 p.m. Insemination in the local homes increased from approximately 78% to approximately 93% over the same time points. In the semi-field observations of wild-caught captive mosquitoes, the proportions of inseminated An. funestus were 20.9% (95% confidence interval [CI]: ± 2.8) outdoors, 25.2% (95% CI: ± 3.4) indoors and 16.8% (± 8.3) in exit traps, while the proportions of inseminated An. arabiensis were 42.3% (95% CI: ± 5.5) outdoors, 47.4% (95% CI: ± 4.7) indoors and 37.1% (CI: ± 6.8) in exit traps. CONCLUSION: Wild populations of An. funestus and An. arabiensis in these study villages can mate both inside and outside human dwellings. Most of the mating clearly happens before the mosquitoes enter houses, but additional mating happens indoors. The ecological significance of such indoor mating remains to be determined. The observed insemination inside the experimental huts fitted with exit traps and in the unsealed village houses suggests that the indoor mating happens voluntarily even under unrestricted egress. These findings may inspire improved vector control, such as by targeting males indoors, and potentially inform alternative methods for colonizing strongly eurygamic Anopheles species (e.g. An. funestus) inside laboratories or semi-field chambers.


Asunto(s)
Anopheles/fisiología , Vivienda , Malaria/transmisión , Mosquitos Vectores/fisiología , Conducta Sexual Animal , Animales , Anopheles/clasificación , Anopheles/parasitología , Femenino , Humanos , Mordeduras y Picaduras de Insectos , Malaria/parasitología , Masculino , Control de Mosquitos/métodos , Población Rural
12.
Parasit Vectors ; 14(1): 420, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419140

RESUMEN

BACKGROUND: Malaria is often persistent in communities surrounded by mosquito breeding habitats. Anopheles gambiae sensu lato exploit a variety of aquatic habitats, but the biotic determinants of its preferences are poorly understood. This study aimed to identify and quantify macroinvertebrates in different habitat types with determined water physico-chemical parameters to establish those preferred by An. gambiae s.l. larvae as well as their predators and competitors. METHODS: A field survey was conducted in Kibuye and Kayonjo villages located in the vicinity of the River Sezibwa, north-eastern Uganda to identify Anopheline larval habitats shared by aquatic insects. Habitats were geo-recorded and as streams, ponds, temporary pools and roadside ditches. From October to December 2017, random microhabitats/quadrats were selected from each habitat type, their water physico-chemical parameters (electrical conductivity, total dissolved solids, temperature and pH) were measured, and they were sampled for macroinvertebrates using standard dippers. All collected arthropod macroinvertebrates were then morphologically identified to family level and enumerated. RESULTS: Principal component analysis showed that the four larval habitat types were characterized by distinct physico-chemical parameter profiles. Ponds and streams had the highest number and diversity of macroinvertebrate insect taxa and sustained few An. gambiae s.l. larvae. Anopheles gambiae s.l. were more common in roadside ditches and particularly abundant in temporary pools which it commonly shared with Dytiscidae (predaceous diving beetles) and Culex spp. Cluster correlation analysis conducted on the abundance of these taxa within quadrats suggested that An. gambiae s.l. and Dytiscidae have the most similar patterns of microhabitat use, followed by Cybaeidae (water spiders). Whilst Culex spp. co-occurred with An. gambiae s.l. in some habitats, there was only partial niche overlap and no clear evidence of competition between the two mosquito taxa. CONCLUSIONS: Ponds and streams are habitats that host the largest diversity and abundance of aquatic insect taxa. Anopheles gambiae s.l. larvae distinctively preferred temporary pools and roadside ditches, where they were exposed to few predators and no apparent competition by Culex spp. Further studies should aim to test the impact of Dytiscidae and Cybaeidae on An. gambiae s.l. dynamics experimentally.


Asunto(s)
Anopheles/fisiología , Ecosistema , Larva/fisiología , Mosquitos Vectores/fisiología , Conducta Predatoria , Animales , Culex/fisiología , Malaria/transmisión , Ríos , Temperatura , Uganda
13.
Malar J ; 20(1): 346, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34425839

RESUMEN

BACKGROUND: Insecticides are currently the main tools used to reduce the transmission of malaria; therefore, the development of resistance to insecticides in malaria vectors is of major concern for malaria control. The resistance level to pyrethroids is particularly high in the Western region of Burkina Faso and may affect the efficacy of insecticidal bed nets and indoor residual spraying. Adult mosquito swarming and other nocturnal behaviours exhibit spatial and temporal patterns that suggest potential vulnerability to targeted space spraying with effective insecticides. Indeed, targeted space-spraying against adult mosquito swarms has been used to crash mosquito populations and disrupt malaria transmission. METHODS: Prior to impact assessment of swarm killing, a baseline data collection was conducted from June to November 2016 in 10 villages divided into two areas in western Burkina Faso. The data considered both ecological and demographic characteristics to monitor the key entomological parameters. RESULTS: The mean number of swarms observed was 35 per village, ranging from 25 to 70 swarms according to the village. Female density in both areas varied significantly as a function of the village and the period of collection. The human biting rate was significantly affected by the period of collection and depended upon whether the collection was carried out indoors or outdoors. Averages of parity rate were high in both areas for all periods of collection, ranging from 60 to 90%. These values ranged from 80 to 100% for inseminated females. Sporozoite rates ranged between 1.6 and 7.2% depending upon the village. The molecular identification of resting and swarming mosquitoes showed the presence of the three major malaria vectors in Burkina Faso, but in different proportions for each village. CONCLUSIONS: The distribution of the potential swarm markers and swarms in villages suggested that swarms are clustered across space, making intervention easier. Power simulations showed that the direct sampling of swarms provides the highest statistical power, thereby reducing the number of villages needed for a trial.


Asunto(s)
Anopheles , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores , Animales , Burkina Faso , Control de Mosquitos/estadística & datos numéricos
15.
Parasit Vectors ; 14(1): 281, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039430

RESUMEN

BACKGROUND: Traditional malaria vector sampling techniques bias collections towards female mosquitoes. Comprehensive understanding of vector dynamics requires balanced vector sampling of both males and females. Male mosquito sampling is also necessary for population size estimations by male-based mark-release-recapture (MRR) studies and for developing innovations in mosquito control, such as the male-targeted sterile insect technique and other genetic modification approaches. This study evaluated a range of collection methods which show promise in providing a more equal, or even male-biased, sex representation in the sample. RESULTS: Swarms were found at all study sites and were more abundant and larger at the peak of the wet season. Swarm sampling caught the most males, but when man/hour effort was factored in, sampling of eaves by aspiration was the more efficient method and also provided a representative sample of females. Grass-roofed houses were the most productive for eave collections. Overall few mosquitoes were caught with artificial resting traps (clay pots and buckets), although these sampling methods performed better at the start of the wet season than at its peak, possibly because of changes in mosquito ecology and an increased availability of natural resting sites later in the season. Aspiration of bushes was more productive at the peak of the wet season than at the start. CONCLUSIONS: The results of this study demonstrate that eave aspiration was an efficient and useful male mosquito collection method at the study sites and a potentially powerful aid for swarm location and MRR studies. The methods evaluated may together deliver more sex-balanced mosquito captures and can be used in various combinations depending on the aims and ecological parameters of a given study.


Asunto(s)
Anopheles , Ecología , Mosquitos Vectores , Distribución Animal , Animales , Femenino , Vivienda , Humanos , Malaria/transmisión , Masculino , Control de Mosquitos/métodos , Densidad de Población , Estaciones del Año , Especificidad de la Especie , Uganda
16.
Parasit Vectors ; 14(1): 268, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34016175

RESUMEN

BACKGROUND: Malaria vector control approaches that rely on mosquito releases such as the sterile insect technique (SIT) and suppression or replacement strategies relying on genetically modified mosquitoes (GMM) depend on effective mass production of Anopheles mosquitoes. Anophelines typically require relatively clean larval rearing water, and water management techniques that minimise toxic ammonia are key to achieving optimal rearing conditions in small and large rearing facilities. Zeolites are extensively used in closed-system fish aquaculture to improve water quality and reduce water consumption, thanks to their selective adsorption of ammonia and toxic heavy metals. The many advantages of zeolites include low cost, abundance in many parts of the world and environmental friendliness. However, so far, their potential benefit for mosquito rearing has not been evaluated. METHODS: This study evaluated the independent effects of zeolite and daily water changes (to simulate a continuous flow system) on the rearing of An. coluzzii under two feed regimes (powder and slurry feed) and larval densities (200 and 400 larvae per tray). The duration of larval development, adult emergence success and phenotypic quality (body size) were recorded to assess the impact of water treatments on mosquito numbers, phenotypic quality and identification of optimal feeding regimes and larval density for the use of zeolite. RESULTS: Overall, mosquito emergence, duration of development and adult phenotypic quality were significantly better in treatments with daily water changes. In treatments without daily water changes, zeolite significantly improved water quality at the lower larval rearing density, resulting in higher mosquito emergence and shorter development time. At the lower larval rearing density, the adult phenotypic quality did not significantly differ between zeolite treatment without water changes and those with daily changes. CONCLUSIONS: These results suggest that treating rearing water with zeolite can improve mosquito production in smaller facilities. Zeolite could also offer cost-effective and environmentally friendly solutions for water recycling management systems in larger production facilities. Further studies are needed to optimise and assess the costs and benefits of such applications to Anopheles gambiae (s.l.) mosquito-rearing programmes.


Asunto(s)
Amoníaco/farmacología , Anopheles/crecimiento & desarrollo , Agua Dulce/química , Zeolitas/farmacología , Animales , Anopheles/efectos de los fármacos , Tamaño Corporal/efectos de los fármacos , Femenino , Agua Dulce/parasitología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Masculino , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/crecimiento & desarrollo , Fenotipo , Calidad del Agua
17.
Malar J ; 20(1): 123, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653355

RESUMEN

BACKGROUND: Larval source management was historically one of the most effective malaria control methods but is now widely deprioritized in Africa, where insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are preferred. However, in Tanzania, following initial successes in urban Dar-es-Salaam starting early-2000s, the government now encourages larviciding in both rural and urban councils nationwide to complement other efforts; and a biolarvicide production-plant has been established outside the commercial capital. This study investigated key obstacles and opportunities relevant to effective rollout of larviciding for malaria control, with a focus on the meso-endemic region of Morogoro, southern Tanzania. METHODS: Key-informants were interviewed to assess awareness and perceptions regarding larviciding among designated health officials (malaria focal persons, vector surveillance officers and ward health officers) in nine administrative councils (n = 27). Interviewer-administered questionnaires were used to assess awareness and perceptions of community members in selected areas regarding larviciding (n = 490). Thematic content analysis was done and descriptive statistics used to summarize the findings. RESULTS: A majority of malaria control officials had participated in larviciding at least once over the previous three years. A majority of community members had neutral perceptions towards positive aspects of larviciding, but overall support for larviciding was high, although several challenges were expressed, notably: (i) insufficient knowledge for identifying relevant aquatic habitats of malaria vectors and applying larvicides, (ii) inadequate monitoring of programme effectiveness, (iii) limited financing, and (iv) lack of personal protective equipment. Although the key-informants reported sensitizing local communities, most community members were still unaware of larviciding and its potential. CONCLUSIONS: The larviciding programme was widely supported by both communities and malaria control officials, but there were gaps in technical knowledge, implementation and public engagement. To improve overall impact, it is important to: (i) intensify training efforts, particularly for identifying habitats of important vectors, (ii) adopt standard technical principles for applying larvicides or larval source management, (iii) improve financing for local implementation and (iv) improve public engagement to boost community awareness and participation. These lessons could also be valuable for other malaria endemic areas wishing to deploy larviciding for malaria control or elimination.


Asunto(s)
Anopheles , Malaria/prevención & control , Control de Mosquitos/organización & administración , Participación de los Interesados , Animales , Anopheles/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Gobierno Local , Mosquitos Vectores , Tanzanía
18.
Malar J ; 20(1): 67, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531024

RESUMEN

BACKGROUND: Malaria persists as a huge medical and economic burden. Although the number of cases and death rates have reduced in recent years, novel interventions are a necessity if such gains are to be maintained. Alternative methods to target mosquito vector populations that involve the release of large numbers genetically modified mosquitoes are in development. However, their successful introduction will require innovative strategies to bulk-up mosquito numbers and improve mass rearing protocols for Anopheles mosquitoes. METHODS: The relationship between mosquito aquatic stage development and temperature was exploited so that multiple cohorts of mosquitoes, from separate egg batches, could be synchronized to 'bulk-up' the number of mosquitoes released. First instar larvae were separated into two cohorts: the first, maintained under standard insectary conditions at 27oC, the second subjected to an initial 5-day cooling period at 19oC. RESULTS: Cooling of 1st instars slowed the mean emergence times of Anopheles coluzzii and Anopheles gambiae by 2.4 and 3.5 days, respectively, compared to their 27oC counterparts. Pupation and emergence rates were good (> 85 %) in all conditions. Temperature adjustment had no effect on mosquito sex ratio and adult fitness parameters such as body size and mating success. CONCLUSIONS: Bulk-up larval synchronization is a simple method allowing more operational flexibility in mosquito production towards mark-release-recapture studies and mass release interventions.


Asunto(s)
Anopheles/fisiología , Frío , Conducta Sexual Animal , Animales , Anopheles/crecimiento & desarrollo , Tamaño Corporal , Femenino , Larva/crecimiento & desarrollo
19.
Parasit Vectors ; 14(1): 17, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407790

RESUMEN

BACKGROUND: The sibling species of the malaria mosquito, Anopheles gambiae (sensu stricto) and Anopheles coluzzii co-exist in many parts of West Africa and are thought to have recently diverged through a process of ecological speciation with gene flow. Divergent larval ecological adaptations, resulting in Genotype-by-Environment (G × E) interactions, have been proposed as important drivers of speciation in these species. In West Africa, An. coluzzii tends to be associated with permanent man-made larval habitats such as irrigated rice fields, which are typically more eutrophic and mineral and ammonia-rich than the temporary rain pools exploited by An. gambiae (s.s.) METHODS: To highlight G × E interactions at the larval stage and their possible role in ecological speciation of these species, we first investigated the effect of exposure to ammonium hydroxide and water mineralisation on larval developmental success. Mosquito larvae were exposed to two water sources and increasing ammonia concentrations in small containers until adult emergence. In a second experiment, larval developmental success was compared across two contrasted microcosms to highlight G × E interactions under conditions such as those found in the natural environment. RESULTS: The first experiment revealed significant G × E interactions in developmental success and phenotypic quality for both species in response to increasing ammonia concentrations and water mineralisation. The An. coluzzii strain outperformed the An. gambiae (s.s.) strain under limited conditions that were closer to more eutrophic habitats. The second experiment revealed divergent crisscrossing reaction norms in the developmental success of the sibling species in the two contrasted larval environments. As expected, An. coluzzii had higher emergence rates in the rice paddy environment with emerging adults of superior phenotypic quality compared to An. gambiae (s.s.), and vice versa, in the rain puddle environment. CONCLUSIONS: Evidence for such G × E interactions lends support to the hypothesis that divergent larval adaptations to the environmental conditions found in man-made habitats such as rice fields in An. coluzzii may have been an important driver of its ecological speciation.


Asunto(s)
Amoníaco/metabolismo , Anopheles/fisiología , Adaptación Fisiológica , África Occidental , Animales , Bioensayo/métodos , Evolución Biológica , Productos Agrícolas , Ecosistema , Eutrofización , Especiación Genética , Laboratorios , Larva/fisiología , Malaria/transmisión , Mosquitos Vectores/fisiología , Agua/química
20.
Parasit Vectors ; 14(1): 82, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509273

RESUMEN

BACKGROUND: Since the late 1990s, malaria control programmes have relied extensively on mass bednet distribution and indoor residual spraying. Both interventions use pesticides and target mosquitoes coming indoors either to feed or to rest. Unfortunately, these intensified vector control campaigns have resulted in mosquito populations with high levels of resistance to most of the chemical compounds used against them and which are increasingly exophagic and exophillic, hence difficult to monitor indoors. Consequently, there is an urgent need for novel tools to sample outdoor anopheline populations for monitoring interventions and disease surveillance programmes. METHODOLOGIES: In this study, we tested several modifications and configurations of the BioGents® Sentinel (BGS) trap, designed with the aim to increase its efficacy for sampling malaria vector species. Traps were used with chemical attractants and CO2, and the impacts of trap position, trap colour contrast combination and the addition of a heat source were tested in two studies conducted in the Sudano-Sahelian region of Burkina Faso and Mali. RESULTS: The results show that of all the configurations tested, the addition of a heat source to the BGS trap with the original colour combination and an upward positioning resulted in a 1.8- and 5.9-fold increase in host-seeking Anopheles gambiae (s.l.) females in the experiments performed in Burkina Faso and Mali, respectively. BGS with heat traps, referred to as BGSH traps, captured An. gambiae (s.l.), An. pharoensis, An. coustani, Culex and Mansonia spp. Importantly, the results suggest that their efficacy does not depend on the close proximity of nearby hosts in houses. CONCLUSIONS: The results suggest that BGSH traps can be an effective scalable tool for sampling outdoor anopheline vector populations. Further developments enabling CO2 and heat generation for longer periods of time would further improve the trap's versatility for large-scale surveillance programmes.


Asunto(s)
Anopheles , Control de Mosquitos/métodos , Animales , Anopheles/fisiología , Conducta Animal , Burkina Faso , Vectores de Enfermedades , Calor , Mordeduras y Picaduras de Insectos , Malaria/transmisión , Malí , Mosquitos Vectores/fisiología , Odorantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...