Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 706: 149764, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38484569

RESUMEN

Recent studies propose that primary transcripts of miRNAs (pri-miRNAs) contain small Open Reading Frames (ORFs) capable of encoding miRNA-encoded peptides (miPEPs). These miPEPs can function as transcriptional regulators for their corresponding pri-miRNAs, ultimately enhancing mature miRNA accumulation. Notably, pri-miR408 encodes the functional peptide miPEP408, regulating expression of miR408 and its target genes, providing plant tolerance to stresses. While miPEPs are crucial regulators, the factors governing them are have not been studied in detail. Here, we explored the light-dependent regulation of miPEP408 in Arabidopsis. Expression analysis during dark-light transitions revealed light-induced transcription and accumulation of the miPEP408. As the promoter of miR408 contains cis-acting elements responsible for binding to the bZIP-type transcription factor ELONGATED HYPOCOTYL5 (HY5), known for light-mediated regulation in plants, we studied its involvement in the regulation of miR408. Analysis of HY5 mutant (hy5-215), complemented line (HY5OX/hy5), and CONSTITUTIVE PHOTOMORPHOGENIC 1 mutant (cop1-4) plants supported HY5's positive regulation of miPEP408. Grafting and GUS assays further suggested the role of HY5 as a shoot-root mobile signal inducing light-dependent miPEP408 expression. This study underscores the regulatory impact of light on small peptides, exemplified by miPEP408, mediated by the key transcription factor HY5.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Péptidos/genética , Péptidos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant Physiol Biochem ; 207: 108397, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316099

RESUMEN

More than 8 million deaths are caused by tobacco-related diseases every year. A staggering 1.2 million of those fatalities occur due to second-hand smoke exposure among non-smokers, but more than 7 million are due to direct tobacco use among smokers. Nicotine acts as the key ingredient triggering the addiction. The United States Food and Drug Administration (FDA) has classified more than 90 chemical components of tobacco and related smoke as hazardous or potentially hazardous leading to cancer, cardiovascular, respiratory, and reproductive disorders. Hence, reducing nicotine content has been the foremost objective to reduce health and death risks. Therefore, various biotechnological approaches for developing tobacco varieties with low nicotine concentrations are urgently required for the welfare of humankind. In recent years, numerous advancements have been made in nicotine-based tobacco research, suggesting regulatory components involved in nicotine biosynthesis and developing nicotine-less tobacco varieties through biotechnological approaches. This review highlights the various regulatory components and major approaches used to modulate nicotine content in tobacco cultivars.


Asunto(s)
Nicotina , Tabaquismo , Estados Unidos , Biotecnología
4.
J Hazard Mater ; 465: 133100, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38042003

RESUMEN

Non-essential heavy metal cadmium (Cd) is toxic to plants and animals. Cadmium affects plant photosynthesis, respiration, and causes water imbalance and may lead to plant death. Cadmium induces toxicity by interfering with the essential metal copper (Cu) homeostasis, which affects plant nutrition. Though root lignin biosynthesis is positively regulated by Cd stress, the underlying mechanisms promoting lignin accumulation and controlling Cd-induced Cu limitation responses are unclear. Here, we elucidated the role of Cu-responsive microRNA (miR397b) in Arabidopsis thaliana plants for Cd stress by targeting the LACCASE2 (LAC2) gene. This study demonstrated the fundamental mechanism of miR397b-mediated Cd stress response by enhancing the lignin content in root tissues. We developed miR397b over-expressing plants, which showed considerable Cd stress tolerance. Plants with knockdown function of LAC2 also showed significant tolerance to Cd stress. miR397b overexpressing and lac2 mutant plants showed root reduction, higher biomass and chlorophyll content, and significantly lower Reactive Oxygen Species (ROS). This study demonstrated the miR397b-mediated Cd stress response in Arabidopsis by enhancing the lignin content in root tissues. We conclude that modulation in miR397b can be potentially used for improving plants for Cd tolerance and Cu homeostasis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cadmio/metabolismo , Cobre , Lignina , Proteínas de Arabidopsis/genética , Homeostasis , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Biochem Biophys Res Commun ; 695: 149423, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38157630

RESUMEN

The Raffinose Family of Oligosaccharides (RFOs), including Galactinol, Raffinose, and Stachyose, are pivotal carbohydrates with significant roles in abiotic stress tolerance and growth within dynamic environments. Plant development is profoundly influenced by light, a major environmental signal. Despite this, the interconnections between the biosynthesis of secondary sugars and light signaling have remained unexplored. This study reveals that exposure to light induces the expression of Galactinol synthase (AtGolS1), a key enzyme in the RFO biosynthesis pathway. The light-inducible response of AtGolS1 operates downstream of ELONGATED HYPOCOTYL 5 (HY5), a central regulator in light signaling. Mutant seedlings with disrupted HY5 function (hy5-215) exhibit reduced AtGolS1 transcript accumulation compared to wild-type (WT) and HY5 overexpression seedlings. DNA-protein interaction studies demonstrate that HY5 directly binds to light-responsive cis-elements in the promoter region of AtGolS1, thereby mediating its light responsiveness. Quantification of galactinol revealed a diminished accumulation in the hy5-215 mutant compared to wild-type (WT) and HY5 overexpression seedlings. Consequently, these findings shed light on the intricate crosstalk between RFO biosynthesis and light signaling in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Disacáridos , Galactosiltransferasas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Rafinosa/metabolismo , Plantones/genética , Plantones/metabolismo
6.
J Hazard Mater ; 465: 133255, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38103287

RESUMEN

Tobacco remains one of the most commercially important crops due to the parasympathomimetic alkaloid nicotine used in cigarettes. Most genes involved in nicotine biosynthesis are expressed in root tissues; however, their light-dependent regulation has not been studied. Here, we identified the ELONGATED HYPOCOTYL 5 homolog, NtHY5, from Nicotiana tabacum and demonstrated that NtHY5 could complement the Arabidopsis thaliana hy5 mutant at molecular, morphological and biochemical levels. We report the development of CRISPR/Cas9-based knockout mutant plants of tobacco, NtHY5CR, and show down-regulation of the nicotine and phenylpropanoid pathway genes leading to a significant reduction in nicotine and flavonol content, whereas NtHY5 overexpression (NtHY5OX) plants show the opposite effect. Grafting experiments using wild-type, NtHY5CR, and NtHY5OX indicated that NtHY5 moves from shoot-to-root to regulate nicotine biosynthesis in the root tissue. Shoot HY5, directly or through enhancing expression of the root HY5, promotes nicotine biosynthesis by binding to light-responsive G-boxes present in the NtPMT, NtQPT and NtODC promoters. We conclude that the mobility of HY5 from shoot-to-root regulates light-dependent nicotine biosynthesis. The CRISPR/Cas9-based mutants developed, in this study; with low nicotine accumulation in leaves could help people to overcome their nicotine addiction and the risk of death.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Factores de Transcripción/genética , Hipocótilo/genética , Hipocótilo/metabolismo , Nicotina , Proteínas de Arabidopsis/genética , Nicotiana , Regulación de la Expresión Génica de las Plantas , Arabidopsis/metabolismo , Mutación , Luz
7.
Microb Cell Fact ; 22(1): 226, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925404

RESUMEN

Many plants possess immense pharmacological properties because of the presence of various therapeutic bioactive secondary metabolites that are of great importance in many pharmaceutical industries. Therefore, to strike a balance between meeting industry demands and conserving natural habitats, medicinal plants are being cultivated on a large scale. However, to enhance the yield and simultaneously manage the various pest infestations, agrochemicals are being routinely used that have a detrimental impact on the whole ecosystem, ranging from biodiversity loss to water pollution, soil degradation, nutrient imbalance and enormous health hazards to both consumers and agricultural workers. To address the challenges, biological eco-friendly alternatives are being looked upon with high hopes where endophytes pitch in as key players due to their tight association with the host plants. The intricate interplay between plants and endophytic microorganisms has emerged as a captivating subject of scientific investigation, with profound implications for the sustainable biosynthesis of pharmaceutically important secondary metabolites. This review delves into the hidden world of the "secret wedlock" between plants and endophytes, elucidating their multifaceted interactions that underpin the synthesis of bioactive compounds with medicinal significance in their plant hosts. Here, we briefly review endophytic diversity association with medicinal plants and highlight the potential role of core endomicrobiome. We also propose that successful implementation of in situ microbiome manipulation through high-end techniques can pave the way towards a more sustainable and pharmaceutically enriched future.


Asunto(s)
Endófitos , Plantas Medicinales , Humanos , Endófitos/metabolismo , Ecosistema , Hongos/metabolismo , Biodiversidad
8.
J Pharm Anal ; 13(9): 1041-1057, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37842663

RESUMEN

Herbal medicines are popular natural medicines that have been used for decades. The use of alternative medicines continues to expand rapidly across the world. The World Health Organization suggests that quality assessment of natural medicines is essential for any therapeutic or health care applications, as their therapeutic potential varies between different geographic origins, plant species, and varieties. Classification of herbal medicines based on a limited number of secondary metabolites is not an ideal approach. Their quality should be considered based on a complete metabolic profile, as their pharmacological activity is not due to a few specific secondary metabolites but rather a larger group of bioactive compounds. A holistic and integrative approach using rapid and nondestructive analytical strategies for the screening of herbal medicines is required for robust characterization. In this study, a rapid and effective quality assessment system for geographical traceability, species, and variety-specific authenticity of the widely used natural medicines turmeric, Ocimum, and Withania somnifera was investigated using Fourier transform near-infrared (FT-NIR) spectroscopy-based metabolic fingerprinting. Four different geographical origins of turmeric, five different Ocimum species, and three different varieties of roots and leaves of Withania somnifera were studied with the aid of machine learning approaches. Extremely good discrimination (R2 > 0.98, Q2 > 0.97, and accuracy = 1.0) with sensitivity and specificity of 100% was achieved using this metabolic fingerprinting strategy. Our study demonstrated that FT-NIR-based rapid metabolic fingerprinting can be used as a robust analytical method to authenticate several important medicinal herbs.

9.
Curr Opin Plant Biol ; 73: 102353, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37001187

RESUMEN

Plants are sessile organisms and must adapt to various environmental changes, especially from stress conditions. Synthesis of secondary metabolites by the plant is one of the adaptive mechanisms against stress to provide resistance. Among several secondary metabolites, flavonols, a subgroup of flavonoids, are one of the most widely distributed in the plant kingdom. These molecules work as antioxidants, reduce reactive oxygen species (ROS) in plants, and cause detrimental effects on insect growth on feeding. Despite the great interest in flavonol function leading to insect tolerance and stress response, the detailed mechanisms related to these specific functions have yet to be studied. In this review, we have summarized the role of flavonols in plant defense against insects and different abiotic stresses and possible mechanisms involved in these functions.


Asunto(s)
Flavonoides , Flavonoles , Flavonoles/metabolismo , Flavonoides/metabolismo , Estrés Fisiológico , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantas/genética , Plantas/metabolismo
10.
J Vis Exp ; (192)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36847372

RESUMEN

Comprehensive knowledge of plant root system architecture (RSA) development is critical for improving nutrient use efficiency and increasing crop cultivar tolerance to environmental challenges. An experimental protocol is presented for setting up the hydroponic system, plantlet growth, RSA spreading, and imaging. The approach used a magenta box-based hydroponic system containing polypropylene mesh supported by polycarbonate wedges. Experimental settings are exemplified by assessing the RSA of the plantlets under varying nutrient (phosphate [Pi]) supply. The system was established to examine the RSA of Arabidopsis, but it is readily adaptable to study other plants like Medicago sativa (Alfalfa). Arabidopsis thaliana (Col-0) plantlets are used in this investigation as an example to understand the plant RSA. Seeds are surface sterilized by treating ethanol and diluted commercial bleach, and kept at 4 °C for stratification. The seeds are germinated and grown on a liquid half-MS medium on a polypropylene mesh supported by polycarbonate wedges. The plantlets are grown under standard growth conditions for the desired number days, gently picked out from the mesh, and submersed in water-containing agar plates. Each root system of the plantlets is spread gently on the water-filled plate with the help of a round art brush. These Petri plates are photographed or scanned at high resolution to document the RSA traits. The root traits, such as primary root, lateral roots, and branching zone, are measured using the freely available ImageJ software. This study provides techniques for measuring plant root characteristics in controlled environmental settings. We discuss how to (1) grow the plantlets, and collect and spread root samples, (2) obtain pictures of spread RSA samples, (3) capture the images, and (4) use image analysis software to quantify root attributes. The advantage of the present method is the versatile, easy, and efficient measurement of the RSA traits.


Asunto(s)
Arabidopsis , Polipropilenos , Raíces de Plantas , Fenotipo , Fosfatos , Agua
11.
Biology (Basel) ; 12(2)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36829576

RESUMEN

Type 2 diabetes is one of the leading threats to human health in the 21st century. It is a metabolic disorder characterized by a dysregulated glucose metabolism resulting from impaired insulin secretion or insulin resistance. More recently, accumulated epidemiological and animal model studies have confirmed that circadian dysfunction caused by shift work, late meal timing, and sleep loss leads to type 2 diabetes. Circadian rhythms, 24-h endogenous biological oscillations, are a fundamental feature of nearly all organisms and control many physiological and cellular functions. In mammals, light synchronizes brain clocks and feeding is a main stimulus that synchronizes the peripheral clocks in metabolic tissues, such as liver, pancreas, muscles, and adipose tissues. Circadian arrhythmia causes the loss of synchrony of the clocks of these metabolic tissues and leads to an impaired pancreas ß-cell metabolism coupled with altered insulin secretion. In addition to these, gut microbes and circadian rhythms are intertwined via metabolic regulation. Omics approaches play a significant role in unraveling how a disrupted circadian metabolism causes type 2 diabetes. In the present review, we emphasize the discoveries of several genes, proteins, and metabolites that contribute to the emergence of type 2 diabetes mellitus (T2D). The implications of these discoveries for comprehending the circadian clock network in T2D may lead to new therapeutic solutions.

12.
Plant Physiol ; 192(2): 837-856, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36682886

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in regulating various developmental and biological processes. The expression of miRNAs is differentially modulated in response to various biotic and abiotic stresses. Recent findings have shown that some pri-miRNAs encode small regulatory peptides known as microRNA-encoded peptides (miPEPs). miPEPs regulate the growth and development of plants by modulating corresponding miRNA expression; however, the role of these peptides under different stress conditions remains unexplored. Here, we report that pri-miR408 encodes a small peptide, miPEP408, that regulates the expression of miR408, its targets, and associated phenotype in Arabidopsis. We also report that miR408, apart from Plantacyanin (ARPN) and Laccase3 (LAC3), targets a glutathione S-transferase (GSTU25) that plays a role in sulfur assimilation and exhibits a range of detoxification activities with the environmental pollutant. Plants overexpressing miR408 showed severe sensitivity under low sulfur (LS), arsenite As(III), and LS + As(III) stress, while miR408 mutants developed using the CRISPR/Cas9 approach showed tolerance. Transgenic lines showed phenotypic alteration and modulation in the expression of genes involved in the sulfur reduction pathway and affect sulfate and glutathione accumulation. Similar to miR408 overexpressing lines, the exogenous application of synthetic miPEP408 and miPEP408OX lines led to sensitivity in plants under LS, As(III), and combined LS + As(III) stress compared to the control. This study suggests the involvement of miR408 and miPEP408 in heavy metal and nutrient deficiency responses through modulation of the sulfur assimilation pathway.


Asunto(s)
Arabidopsis , Arsénico , Fenómenos Biológicos , MicroARNs , Arabidopsis/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Estrés Fisiológico/genética , Glutatión/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Azufre/metabolismo , Regulación de la Expresión Génica de las Plantas
13.
Metabolites ; 13(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36677046

RESUMEN

Identification of plant species is a crucial process in natural products. Ocimum, often referred to as the queen of herbs, is one of the most versatile and globally used medicinal herbs for various health benefits due to it having a wide variety of pharmacological activities. Despite there being significant global demand for this medicinal herb, rapid and comprehensive metabolomic fingerprinting approaches for species- and variety-specific classification are limited. In this study, metabolomic fingerprinting of five Ocimum species (Ocimum basilicum L., Ocimum sanctum L., Ocimum africanum Lour., Ocimum kilimandscharicum Gurke., and Hybrid Tulsi) and their varieties was performed using LC-MS, GC-MS, and the rapid fingerprinting approach FT-NIR combined with chemometrics. The aim was to distinguish the species- and variety-specific variation with a view toward developing a quality assessment of Ocimum species. Discrimination of species and varieties was achieved using principal component analysis (PCA), partial least squares discriminate analysis (PLS-DA), data-driven soft independent modelling of class analogy (DD-SIMCA), random forest, and K-nearest neighbours with specificity of 98% and sensitivity of 99%. Phenolics and flavonoids were found to be major contributing markers for species-specific variation. The present study established comprehensive metabolomic fingerprinting consisting of rapid screening and confirmatory approaches as a highly efficient means to identify the species and variety of Ocimum, being able to be applied for the quality assessment of other natural medicinal herbs.

14.
Plant Sci ; 326: 111519, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36330966

RESUMEN

The plant science community has identified various regulatory components involved in gene expression. With the advancement of approaches and technologies, new layers of gene regulation have been identified, which play essential roles in fine-tuning biological processes. In this area, recently, small peptides emerged as key regulators in gene regulation to control developmental and physiological processes in plants. Various small peptides have also been identified and characterized to elucidate their roles. A class of small peptides, microProteins (miPs), have been shown to contain at least a protein-protein interaction domain with the potential to regulate multi-domain proteins by becoming a part of protein complexes. Recent studies suggest that some pri-miRNAs encode peptides (miPEPs), which are essential components in plant growth and development. This review provides updates about these small peptides, in general, summarizing their potential role in gene regulation and possible mechanism(s) in plants. We also propose that in-depth research on newly identified plant peptides in crops help to provide solutions enabling sustainable agriculture and food production.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , MicroARNs , MicroARNs/genética , Plantas/genética , Péptidos/genética , Micropéptidos
15.
Nucleus (Calcutta) ; 65(3): 303-320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407558

RESUMEN

The positive effect of herbal supplements on aging and age-related disorders has led to the evolution of natural curatives for remedial neurodegenerative diseases in humans. The advancement in aging is exceedingly linked to oxidative stress. Enhanced oxidative stress interrupts health of humans in various ways, necessitating to find stress alleviating herbal resources. Currently, minimal scientifically validated health and cognitive booster resources are available. Therefore, we explored the impact of plant extracts in different combinations on oxidative stress, life span and cognition using the multicellular transgenic humanized C. elegans, and further validated the same in Mus musculus, besides testing their safety and toxicity. In our investigations, the final product-the HACBF (healthy ageing cognitive booster formulation) thus developed was found to reduce major aging biomarkers like lipofuscin, protein carbonyl, lipid levels and enhanced activity of antioxidant enzymes. Further confirmation was done using transgenic worms and RT-PCR. The cognitive boosting activities analyzed in C. elegans and M. musculus model system were found to be at par with donepezil and L-dopa, the two drugs which are commonly used to treat Parkinson's and Alzheimer's diseases. In the transgenic C. elegans model system, the HACBF exhibited reduced aggregation of misfolded disease proteins α-synuclein and increased the health of nicotinic acetylcholine receptor, levels of Acetylcholine and Dopamine contents respectively, the major neurotransmitters responsible for memory, language, learning behavior and movement. Molecular studies clearly indicate that HACBF upregulated major genes responsible for healthy aging and cognitive booster activities in C. elegans and as well as in M. musculus. As such, the present herbal product thus developed may be quite useful for healthy aging and cognitive boosting activities, and more so during this covid-19 pandemic. Supplementary Information: The online version contains supplementary material available at 10.1007/s13237-022-00407-1.

16.
Plant Physiol ; 189(3): 1397-1415, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35325214

RESUMEN

Small molecules, such as peptides and miRNAs, are crucial regulators of plant growth. Here, we show the importance of cross-talk between miPEP858a (microRNA858a-encoded peptide)/miR858a and phytosulfokine (PSK4) in regulating plant growth and development in Arabidopsis (Arabidopsis thaliana). Genome-wide expression analysis suggested modulated expression of PSK4 in miR858a mutants and miR858a-overexpressing (miR858aOX) plants. The silencing of PSK4 in miR858aOX plants compromised growth, whereas overexpression of PSK4 in the miR858a mutant rescued the developmental defects. The exogenous application of synthetic PSK4 further complemented the plant development in mutant plants. Exogenous treatment of synthetic miPEP858a in the PSK4 mutant led to clathrin-mediated internalization of the peptide; however, it did not enhance growth as is the case in wild-type plants. We also demonstrated that MYB3 is an important molecular component participating in the miPEP858a/miR858a-PSK4 module. Finally, our work highlights the signaling between miR858a/miPEP858a-MYB3-PSK4 in modulating the expression of key elements involved in auxin responses, leading to the regulation of growth.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis , MicroARNs/genética , Péptidos/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Mutación/genética , Péptidos/metabolismo , Desarrollo de la Planta
17.
Biochem Biophys Res Commun ; 605: 51-55, 2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35316763

RESUMEN

microRNAs (miRNAs) regulate target gene expression by pairing to target mRNAs, leading to mRNA degradation or translation inhibition. Out of several miRNAs in Arabidopsis, miR397b and miR857 regulate secondary growth by modulating lignin polymerization and deposition in secondary xylem cells by targeting laccases. Interestingly, the phytohormone ethylene is also suggested to have a role in lignin biosynthesis in tension wood formation. Despite this information, it is not known whether ethylene has any role in controlling secondary growth via miRNAs-mediated pathways. In this study, we elucidate that ethylene acts upstream to the miR397b/miR857-laccases module and negatively regulates lignin biosynthesis by directly activating the expression of both the miRNAs. The binding of EIN3 to the promoter of miR397b is further validated by yeast one-hybrid assay. In addition to its role in lignification, ethylene also regulates leaf serration by directly regulating the expression of NAC transcription factors, like CUP-SHAPED COTYLEDON2 (CUC2) and CUC3. Together, our study suggests a novel mechanism involving ethylene and miRNAs in lignin biosynthesis and leaf serration in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Hojas de la Planta/metabolismo
18.
Plant Sci ; 317: 111196, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35193745

RESUMEN

Flavonoids exhibit amazing structural diversity and play different roles in plants. Besides, these compounds have been associated with several health benefits in humans. Several exogenous and endogenous cues, for example, light, temperature, nutrient status, and phytohormones have been reported as modulators of biosynthesis and accumulation of flavonoids. Thus, multiple hormones and stress-related signaling pathways are involved in the regulation of gene expression associated with this pathway. The transcriptional regulators belonging to the MYB and bHLH family transcription factors are well documented as the direct regulators of the structural genes associated with flavonoid biosynthesis. Recent studies also suggest that some of these factors are regulated by molecular components involved in stress and hormone signaling pathways. Adapter proteins for transcriptional activation or repression via recruitment of co-activators and co-repressors, respectively, E2 ubiquitin ligases, miRNA processing complex, and DNA methylation/demethylation factors have been recently discovered in various plants to play key roles in fine-tuning flavonoids synthesis. In the present review, we aim to provide comprehensive information about the role of different factors in the regulation of flavonoid biosynthesis. Besides, we describe the potential upstream regulators involved in the regulation of flavonoid biosynthesis within the context of available information. To sum up, the present review furnishes an updated account of signal transduction pathways modulating the biosynthesis of flavonoids.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Flavonoides/metabolismo , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Plant Cell Rep ; 41(3): 815-831, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33742256

RESUMEN

KEY MESSAGE: Our review has described principles and functional importance of CRISPR-Cas9 with emphasis on the recent advancements, such as CRISPR-Cpf1, base editing (BE), prime editing (PE), epigenome editing, tissue-specific (CRISPR-TSKO), and inducible genome editing and their potential applications in generating stress-tolerant plants. Improved agricultural practices and enhanced food crop production using innovative crop breeding technology is essential for increasing access to nutritious foods across the planet. The crop plants play a pivotal role in energy and nutrient supply to humans. The abiotic stress factors, such as drought, heat, and salinity cause a substantial yield loss in crop plants and threaten food security. The most sustainable and eco-friendly way to overcome these challenges are the breeding of crop cultivars with improved tolerance against abiotic stress factors. The conventional plant breeding methods have been highly successful in developing abiotic stress-tolerant crop varieties, but usually cumbersome and time-consuming. Alternatively, the CRISPR/Cas genome editing has emerged as a revolutionary tool for making efficient and precise genetic manipulations in plant genomes. Here, we provide a comprehensive review of the CRISPR/Cas genome editing (GE) technology with an emphasis on recent advances in the plant genome editing, including base editing (BE), prime editing (PE), epigenome editing, tissue-specific (CRISPR-TSKO), and inducible genome editing (CRISPR-IGE), which can be used for obtaining cultivars with enhanced tolerance to various abiotic stress factors. We also describe tissue culture-free, DNA-free GE technology, and some of the CRISPR-based tools that can be modified for their use in crop plants.


Asunto(s)
Sistemas CRISPR-Cas , Fitomejoramiento , Sistemas CRISPR-Cas/genética , Sequías , Edición Génica/métodos , Genoma de Planta/genética , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente/genética , Salinidad , Tecnología
20.
Biochem Biophys Res Commun ; 589: 204-208, 2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-34922204

RESUMEN

microRNA encoded peptide (miPEP) has been shown to have potential to regulate corresponding miRNA and associated function. miPEP858a regulate phenylpropanoid pathway and plant development. Several studies have suggested that various factors like light, temperature, heavy metals etc. can regulate gene and their associated functions. However, what are the regulators of miPEP are not reported till date. In this study we have reported that light directly regulates miPEP858a accumulation in Arabidopsis thaliana. Peptide assay in light and dark clearly showed the essential requirement of light. Along with this, we have reported that HY5 a shoot-to-root mobile, light-mediated transcription factor plays a crucial role in the function of miPEP858a. The transcript and endogenous protein accumulation of miPEP858a in hy5-215, OXHY5/hy5, and cop1-4 suggested that the HY5 positively regulates miPEP858a. In addition to that this study also include grafting assay between shoot of different mutant and transgenic lines with root of miPEP858a promoter:reporter lines and promoter deletion construct experiment clearly suggested that HY5 a transcription factor regulates light-dependent expression and accumulation of miPEP858a.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Luz , MicroARNs , Péptidos , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Péptidos/química , Péptidos/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de la radiación , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de la radiación , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...