Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Phys ; 51(1): 18-30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37856190

RESUMEN

BACKGROUND: Online adaptive radiotherapy (ART) involves the development of adaptable treatment plans that consider patient anatomical data obtained right prior to treatment administration, facilitated by cone-beam computed tomography guided adaptive radiotherapy (CTgART) and magnetic resonance image-guided adaptive radiotherapy (MRgART). To ensure accuracy of these adaptive plans, it is crucial to conduct calculation-based checks and independent verification of volumetric dose distribution, as measurement-based checks are not practical within online workflows. However, the absence of comprehensive, efficient, and highly integrated commercial software for secondary dose verification can impede the time-sensitive nature of online ART procedures. PURPOSE: The main aim of this study is to introduce an efficient online quality assurance (QA) platform for online ART, and subsequently evaluate it on Ethos and Unity treatment delivery systems in our clinic. METHODS: To enhance efficiency and ensure compliance with safety standards in online ART, ART2Dose, a secondary dose verification software, has been developed and integrated into our online QA workflow. This implementation spans all online ART treatments at our institution. The ART2Dose infrastructure comprises four key components: an SQLite database, a dose calculation server, a report generator, and a web portal. Through this infrastructure, file transfer, dose calculation, report generation, and report approval/archival are seamlessly managed, minimizing the need for user input when exporting RT DICOM files and approving the generated QA report. ART2Dose was compared with Mobius3D in pre-clinical evaluations on secondary dose verification for 40 adaptive plans. Additionally, a retrospective investigation was conducted utilizing 1302 CTgART fractions from ten treatment sites and 1278 MRgART fractions from seven treatment sites to evaluate the practical accuracy and efficiency of ART2Dose in routine clinical use. RESULTS: With dedicated infrastructure and an integrated workflow, ART2Dose achieved gamma passing rates that were comparable to or higher than those of Mobius3D. Additionally, it significantly reduced the time required to complete pre-treatment checks by 3-4 min for each plan. In the retrospective analysis of clinical CTgART and MRgART fractions, ART2Dose demonstrated average gamma passing rates of 99.61 ± 0.83% and 97.75 ± 2.54%, respectively, using the 3%/2 mm criteria for region greater than 10% of prescription dose. The average calculation times for CTgART and MRgART were approximately 1 and 2 min, respectively. CONCLUSION: Overall, the streamlined implementation of ART2Dose notably enhances the online ART workflow, offering reliable and efficient online QA while reducing time pressure in the clinic and minimizing labor-intensive work.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Programas Informáticos , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada por Rayos X , Dosificación Radioterapéutica
2.
Clin Transl Radiat Oncol ; 40: 100616, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36968578

RESUMEN

•AI dose predictor was fully integrated with treatment planning system and used as a physicain decision support tool to improve uniformity of practice.•Model was trained based on our standard of practice, but implemented at the time of expansion with 3 new physicians join the practice.•Phase 1 retrospective evaluation demonstrated the non-uniform practice among 3 MDs and only 52.9% frequency planner can achieve physicians' directives.•Significant improvement in practice uniformity of practice was observed after utilizing AI as DST and 80.4% frequency clinical plan can achieve AI-guided physician directives.

3.
Med Phys ; 47(8): 3277-3285, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32323324

RESUMEN

PURPOSE: An indoor, real-time location system (RTLS) can benefit both hospitals and patients by improving clinical efficiency through data-driven optimization of procedures. Bluetooth-based RTLS systems are cost-effective but lack accuracy because Bluetooth signal is subject to significant fluctuation. We aim to improve the accuracy of RTLS using the deep learning technique. METHODS: We installed a Bluetooth sensor network in a three-floor clinic building to track patients, staff, and devices. The Bluetooth sensors measured the strength of the signal broadcasted from Bluetooth tags, which was fed into a deep neural network to calculate the location of the tags. The proposed deep neural network consists of a long short-term memory (LSTM) network and a deep classifier for tracking moving objects. Additionally, a spatial-temporal constraint algorithm was implemented to further increase the accuracy and stability of the results. To train the neural network, we divided the building into 115 zones and collected training data in each zone. We further augmented the training data to generate cross-zone trajectories, mimicking the real-world scenarios. We tuned the parameters for the proposed neural network to achieve relatively good accuracy. RESULTS: The proposed deep neural network achieved an overall accuracy of about 97% for tracking objects in each individual zone in the whole three-floor building, 1.5% higher than the baseline neural network that was proposed in an earlier paper, when using 10 s of signals. The accuracy increased with the density of Bluetooth sensors. For tracking moving objects, the proposed neural network achieved stable and accurate results. When latency is less of a concern, we eliminated the effect of latency from the accuracy and gained an accuracy of 100% for our testing trajectories, significantly improved from the baseline method. CONCLUSIONS: The proposed deep neural network composed of a LSTM, a deep classifier and a posterior constraint algorithm significantly improved the accuracy and stability of RTLS for tracking moving objects.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Sistemas de Computación , Humanos , Redes Neurales de la Computación , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...