Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(16): 4461-4467, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38630018

RESUMEN

Internal conversion (IC) is a common radiationless transition in polyatomic molecules. Theory predicts that molecular vibrations assist IC between excited states, and ultrafast experiments can provide insight into their structure-function relationship. Here we elucidate the dynamics of the vibrational modes driving the IC process within the Q band of a functionalized porphyrin molecule. Through a combination of ultrafast multidimensional spectroscopies and theoretical modeling, we observe a 60 fs Qy-Qx IC and demonstrate that it is driven by the interplay among multiple high-frequency modes. Notably, we identify 1510 cm-1 as the leading tuning mode that brings the porphyrin to an optimal geometry for energy surface crossing. By employing coherent wave packet analysis, we highlight a set of short-lived vibrations (1200-1400 cm-1), promoting the IC within ≈60 fs. Furthermore, we identify one coupling mode (1350 cm-1) that is responsible for vibronic mixing within the Q states. Our findings indicate that porphyrin-core functionalization modulates IC effectively, offering new opportunities in photocatalysis and optoelectronics.

2.
J Chem Phys ; 159(8)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37615394

RESUMEN

Multidimensional spectroscopy unveils the interplay of nuclear and electronic dynamics, which characterizes the ultrafast dynamics of various molecular and solid-state systems. In a class of models widely used for the simulation of such dynamics, field-induced transitions between electronic states result in linear transformations (Duschinsky rotations) between the normal coordinates of the vibrational modes. Here, we present an approach for the calculation of the response functions, based on the explicit derivation of the vibrational state. This can be shown to coincide with a multimode squeezed coherent state, whose expression we derive within a quantum-optical formalism, and specifically by the sequential application to the initial state of rotation, displacement, and squeeze operators. The proposed approach potentially simplifies the numerical derivation of the response functions, avoiding the time integration of the Schrödinger equation, the Hamiltonian diagonalization, and the sum over infinite vibronic pathways. In addition, it quantitatively substantiates in the considered models the intuitive interpretation of the response functions in terms of the vibrational wave packet dynamics.

3.
J Chem Phys ; 158(5): 054110, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754824

RESUMEN

The interplay of nuclear and electronic dynamics characterizes the multidimensional electronic spectra of various molecular and solid-state systems. Theoretically, the observable effect of such interplay can be accounted for by response functions. Here, we report analytical expressions for the response functions corresponding to a class of model systems. These are characterized by coupling between the diabatic electronic states and the vibrational degrees of freedom, resulting in linear displacements of the corresponding harmonic oscillators, and by nonadiabatic couplings between pairs of diabatic states. In order to derive the linear response functions, we first perform the Dyson expansion of the relevant propagators with respect to the nonadiabatic component of the Hamiltonian, then derive and expand with respect to the displacements the propagators at given interaction times, and finally provide analytical expressions for the time integrals that lead to the different contributions to the linear response function. The approach is then applied to the derivation of third-order response functions describing different physical processes: ground state bleaching, stimulated emission, excited state absorption, and double quantum coherence. Comparisons between the results obtained up to sixth order in the Dyson expansion and independent numerical calculation of the response functions provide evidence of the series convergence in a few representative cases.

4.
J Chem Phys ; 157(3): 034107, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868941

RESUMEN

Multi-dimensional spectroscopy represents a particularly insightful tool for investigating the interplay of nuclear and electronic dynamics, which plays an important role in a number of photophysical processes and photochemical reactions. Here, we present a coherent state representation of the vibronic dynamics and of the resulting response functions for the widely used linearly displaced harmonic oscillator model. Analytical expressions are initially derived for the case of third-order response functions in an N-level system, with ground state initialization of the oscillator (zero-temperature limit). The results are then generalized to the case of Mth order response functions, with arbitrary M. The formal derivation is translated into a simple recipe, whereby the explicit analytical expressions of the response functions can be derived directly from the Feynman diagrams. We further generalize to the whole set of initial coherent states, which form an overcomplete basis. This allows one, in principle, to derive the dependence of the response functions on arbitrary initial states of the vibrational modes and is here applied to the case of thermal states. Finally, a non-Hermitian Hamiltonian approach is used to include in the above expressions the effect of vibrational relaxation.

5.
Entropy (Basel) ; 25(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36673222

RESUMEN

Few-electron states confined in quantum-dot arrays are key objects in quantum computing. The discrimination between these states is essential for the readout of a (multi-)qubit state, and can be achieved through a measurement of the quantum capacitance within the gate-reflectometry approach. For a system controlled by several gates, the dependence of the measured capacitance on the direction of the oscillations in the voltage space is captured by the quantum capacitance matrix. Herein, we apply this tool to study a double quantum dot coupled to three gates, which enable the tuning of both the bias and the tunneling between the two dots. Analytical solutions for the two-electron case are derived within a Hubbard model, showing the overall dependence of the quantum capacitance matrix on the applied gate voltages. In particular, we investigate the role of the tunneling gate and reveal the possibility of exploiting interdot coherences in addition to charge displacements between the dots. Our results can be directly applied to double-dot experimental setups, and pave the way for further applications to larger arrays of quantum dots.

6.
J Synchrotron Radiat ; 28(Pt 5): 1343-1356, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34475283

RESUMEN

Imaging of biomolecules by ionizing radiation, such as electrons, causes radiation damage which introduces structural and compositional changes of the specimen. The total number of high-energy electrons per surface area that can be used for imaging in cryogenic electron microscopy (cryo-EM) is severely restricted due to radiation damage, resulting in low signal-to-noise ratios (SNR). High resolution details are dampened by the transfer function of the microscope and detector, and are the first to be lost as radiation damage alters the individual molecules which are presumed to be identical during averaging. As a consequence, radiation damage puts a limit on the particle size and sample heterogeneity with which electron microscopy (EM) can deal. Since a transmission EM (TEM) image is formed from the scattering process of the electron by the specimen interaction potential, radiation damage is inevitable. However, we can aim to maximize the information transfer for a given dose and increase the SNR by finding alternatives to the conventional phase-contrast cryo-EM techniques. Here some alternative transmission electron microscopy techniques are reviewed, including phase plate, multi-pass transmission electron microscopy, off-axis holography, ptychography and a quantum sorter. Their prospects for providing more or complementary structural information within the limited lifetime of the sample are discussed.


Asunto(s)
Microscopía por Crioelectrón/métodos , Sustancias Macromoleculares/ultraestructura , Electrones , Relación Señal-Ruido , Relación Estructura-Actividad
7.
Phys Rev Lett ; 120(26): 260503, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30004758

RESUMEN

We address metrological protocols for the estimation of the intensity and the orientation of a magnetic field, and show that quantum-enhanced precision may be achieved by probing the field with an arbitrary spin at thermal equilibrium. A general expression is derived for the ultimate achievable precision, as given by the quantum Fisher information. The optimal observable is shown to correspond to the spin projection along a temperature-dependent direction, and allows a maximally precise parameter estimation also through ensemble measurements. Finally, we prove the robustness of our scheme against deviations of the measured spin projection from optimality.

8.
J Chem Phys ; 148(20): 204112, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29865798

RESUMEN

Revealing possible long-living coherence in ultrafast processes allows detecting genuine quantum mechanical effects in molecules. To investigate such effects from a quantum chemistry perspective, we have developed a method for simulating the time evolution of molecular systems based on ab initio calculations, which includes relaxation and environment-induced dephasing of the molecular wave function whose rates are external parameters. The proposed approach combines a quantum chemistry description of the molecular target with a real-time propagation scheme within the time-dependent stochastic Schrödinger equation. Moreover, it allows a quantitative characterization of the state and dynamics coherence through the l1-norm of coherence and the linear entropy, respectively. To test the approach, we have simulated femtosecond pulse-shaping ultrafast spectroscopy of terrylenediimide, a well-studied fluorophore in single-molecule spectroscopy. Our approach is able to reproduce the experimental findings [R. Hildner et al., Nat. Phys. 7, 172 (2011)], confirming the usefulness of the approach and the correctness of the implementation.

9.
J Phys Condens Matter ; 30(1): 013002, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29047450

RESUMEN

Phenomena involving electron transfer are ubiquitous in nature, photosynthesis and enzymes or protein activity being prominent examples. Their deep understanding thus represents a mandatory scientific goal. Moreover, controlling the separation of photogenerated charges is a crucial prerequisite in many applicative contexts, including quantum electronics, photo-electrochemical water splitting, photocatalytic dye degradation, and energy conversion. In particular, photoinduced charge separation is the pivotal step driving the storage of sun light into electrical or chemical energy. If properly mastered, these processes may also allow us to achieve a better command of information storage at the nanoscale, as required for the development of molecular electronics, optical switching, or quantum technologies, amongst others. In this Topical Review we survey recent progress in the understanding of ultrafast charge separation from photoexcited states. We report the state-of-the-art of the observation and theoretical description of charge separation phenomena in the ultrafast regime mainly focusing on molecular- and nano-sized solar energy conversion systems. In particular, we examine different proposed mechanisms driving ultrafast charge dynamics, with particular regard to the role of quantum coherence and electron-nuclear coupling, and link experimental observations to theoretical approaches based either on model Hamiltonians or on first principles simulations.

10.
Nat Commun ; 7: 13742, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27929115

RESUMEN

The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.

11.
Phys Rev Lett ; 117(18): 187202, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27835005

RESUMEN

Forbidden transitions between energy levels typically involve violation of selection rules imposed by symmetry and/or conservation laws. A nanomagnet tunneling between up and down states violates angular momentum conservation because of broken rotational symmetry. Here we report observations of highly forbidden transitions between spin states in a Ni_{4} single-molecule magnet in which a single photon can induce the spin to change by several times ℏ, nearly reversing the direction of the spin. These observations are understood as tunneling-assisted transitions that lift the standard Δm=±1 selection rule for single-photon transitions. These transitions are observed at low applied fields, where tunneling is dominated by the molecule's intrinsic anisotropy and the field acts as a perturbation. Such transitions can be exploited to create macroscopic superposition states that are not typically accessible through single-photon Δm=±1 transitions.

12.
ACS Nano ; 10(10): 9353-9360, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27726335

RESUMEN

We investigate the electronic and magnetic properties of TbPc2 single ion magnets adsorbed on a graphene/Ni(111) substrate, by density functional theory (DFT), ab initio complete active space self-consistent field calculations, and X-ray magnetic circular dichroism (XMCD) experiments. Despite the presence of the graphene decoupling layer, a sizable antiferromagnetic coupling between Tb and Ni is observed in the XMCD experiments. The molecule-surface interaction is rationalized by the DFT analysis and is found to follow a relay-like communication pathway, where the radical spin on the organic Pc ligands mediates the interaction between Tb ion and Ni substrate spins. A model Hamiltonian which explicitly takes into account the presence of the spin radical is then developed, and the different magnetic interactions at play are assessed by first-principle calculations and by comparing the calculated magnetization curves with XMCD data. The relay-like mechanism is at the heart of the process through which the spin information contained in the Tb ion is sensed and exploited in carbon-based molecular spintronics devices.

13.
J Phys Chem Lett ; 6(24): 5062-6, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26633293

RESUMEN

Controlling and understanding transitions between molecular spin states allows selection of the most suitable ones for qubit encoding. Here we present a detailed investigation of single crystals of a polynuclear Cr8Zn molecular wheel using 241 GHz electron paramagnetic resonance (EPR) spectroscopy in high magnetic field. Continuous wave spectra are well reproduced by spin Hamiltonian calculations, which evidence that transitions in correspondence to a well-defined anticrossing involve mixed states with different total spin. We studied, by means of spin echo experiments, the temperature dependence of the dephasing time (T2) down to 1.35 K. These results are reproduced by considering both hyperfine and intermolecular dipolar interactions, evidencing that the dipolar contribution is completely suppressed at the lowest temperature. Overall, these results shed light on the effects of the decoherence mechanisms, whose understanding is crucial to exploit chemically engineered molecular states as a resource for quantum information processing.

14.
Chem Soc Rev ; 40(6): 3119-29, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21336365

RESUMEN

Technological challenges for quantum information technologies lead us to consider aspects of molecular magnetism in a radically new perspective. The design of new derivatives and recent experimental results on molecular nanomagnets are covered in this tutorial review through the keyhole of basic concepts of quantum information, such as the control of decoherence and entanglement at the (supra-)molecular level.

15.
Nat Nanotechnol ; 4(3): 173-8, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19265847

RESUMEN

The ability to assemble weakly interacting subsystems is a prerequisite for implementing quantum information processing and generating controlled entanglement. In recent years, molecular nanomagnets have been proposed as suitable candidates for qubit encoding and manipulation. In particular, antiferromagnetic Cr7Ni rings behave as effective spin-1/2 systems at low temperature and show long decoherence times. Here, we show that these rings can be chemically linked to each other and that the coupling between their spins can be tuned by choosing the linker. We also present calculations that demonstrate how realistic microwave pulse sequences could be used to generate maximally entangled states in such molecules.

16.
Phys Rev Lett ; 101(21): 217201, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-19113446

RESUMEN

We study the triangular antiferromagnet Cu3 in external electric fields, using symmetry group arguments and a Hubbard model approach. We identify a spin-electric coupling caused by an interplay between spin exchange, spin-orbit interaction, and the chirality of the underlying spin texture of the molecular magnet. This coupling allows for the electric control of the spin (qubit) states, e.g., by using an STM tip or a microwave cavity. We propose an experimental test for identifying molecular magnets exhibiting spin-electric effects.

17.
Dalton Trans ; (23): 2810-7, 2006 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-16751889

RESUMEN

We report on real molecular complexes and propose strategies that explore the possibility of implementation of specific quantum computation architectures with molecular spin systems. We focus on Cr3+ carboxylate derivatives and use the Loss-DiVincenzo scheme as reference.

18.
Phys Rev Lett ; 94(19): 190501, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-16090157

RESUMEN

We propose a scheme for the implementation of quantum gates which is based on the qubit encoding in antiferromagnetic molecular rings. We show that a proper engineering of the intercluster link would result in an effective coupling that vanishes as far as the system is kept in the computational space, while it is turned on by a selective excitation of specific auxiliary states. These are also shown to allow the performing of single-qubit and two-qubit gates without an individual addressing of the rings by means of local magnetic fields.

19.
Phys Rev Lett ; 90(20): 206802, 2003 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-12785913

RESUMEN

A doped semiconductor double-quantum-dot molecule is proposed as a qubit realization. The quantum information is encoded in the electron spin, thus benefiting from the long relevant decoherence times; the enhanced flexibility of the molecular structure allows one to map the spin degrees of freedom onto the orbital ones and vice versa and opens the possibility for high-finesse (conditional and unconditional) quantum gates by means of stimulated Raman adiabatic passages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...