Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673864

RESUMEN

As a follow-up to the previous Special Issue "Aptamers: Functional-Structural Studies and Biomedical Applications" [...].


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Nucleótidos/química , Humanos , Técnica SELEX de Producción de Aptámeros/métodos
2.
Heliyon ; 10(3): e24556, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38317956

RESUMEN

Human angiogenin (hANG) is the most studied stress-induced ribonuclease (RNase). In physiological conditions it performs its main functions in nucleoli, promoting cell proliferation by rDNA transcription, whereas it is strongly limited by its inhibitor (RNH1) throughout the rest of the cell. In stressed cells hANG dissociates from RNH1 and thickens in the cytoplasm where it manages the translational arrest and the recruitment of stress granules, thanks to its propensity to cleave tRNAs and to induce the release of active halves. Since it exists a clear connection between hANG roles and its intracellular routing, starting from our recent findings on heterologous ANG (ANG) properties in human keratinocytes (HaCaT cells), here we designed a variant unable to translocate into the nucleus with the aim of thoroughly verifying its potentialities under stress. This variant, widely characterized for its structural features and biological attitudes, shows more pronounced aid properties than unmodified protein. The collected evidence thus fully prove that ANG stress-induced skills in assisting cellular homeostasis are strictly due to its cytosolic localization. This study opens an interesting scenario for future studies regarding both the strengthening of skin defences and in understanding the mechanism of action of these special enzymes potentially suitable for any cell type.

3.
Dalton Trans ; 53(8): 3476-3483, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38270175

RESUMEN

The reaction of Pt-based anticancer agents with arsenic trioxide affords robust complexes known as arsenoplatins. The prototype of this family of anticancer compounds is arsenoplatin-1 (AP-1) that contains an As(OH)2 fragment linked to a Pt(II) moiety derived from cisplatin. Crystallographic and spectrometric studies of AP-1 binding to a B-DNA double helix dodecamer are presented here, in comparison with cisplatin and transplatin. Results reveal that AP-1, cisplatin and transplatin react differently with the DNA model system. Notably, in the AP-1/DNA systems, the Pt-As bond can break down with time and As-containing fragments can be released. These results have implications for the understanding of the mechanism of action of arsenoplatins.


Asunto(s)
Antineoplásicos , Trióxido de Arsénico/análogos & derivados , ADN Forma B , Cisplatino/química , Factor de Transcripción AP-1/metabolismo , Antineoplásicos/química , ADN/química
4.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003510

RESUMEN

Aptamers are synthetic nucleic acids that are developed to target with high affinity and specificity chemical entities ranging from single ions to macromolecules and present a wide range of chemical and physical properties. Their ability to selectively bind proteins has made these compounds very attractive and versatile tools, in both basic and applied sciences, to such an extent that they are considered an appealing alternative to antibodies. Here, by exhaustively surveying the content of the Protein Data Bank (PDB), we review the structural aspects of the protein-aptamer recognition process. As a result of three decades of structural studies, we identified 144 PDB entries containing atomic-level information on protein-aptamer complexes. Interestingly, we found a remarkable increase in the number of determined structures in the last two years as a consequence of the effective application of the cryo-electron microscopy technique to these systems. In the present paper, particular attention is devoted to the articulated architectures that protein-aptamer complexes may exhibit. Moreover, the molecular mechanism of the binding process was analyzed by collecting all available information on the structural transitions that aptamers undergo, from their protein-unbound to the protein-bound state. The contribution of computational approaches in this area is also highlighted.


Asunto(s)
Aptámeros de Nucleótidos , Ácidos Nucleicos , Microscopía por Crioelectrón , Aptámeros de Nucleótidos/química , Proteínas/química , Anticuerpos
5.
Res Pract Thromb Haemost ; 7(6): 102160, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37727847

RESUMEN

The coagulation process relies on an intricate network of three-dimensional structural interactions and subtle biological regulations. In the present review, we illustrate the state of the art of the structural biology of the coagulation cascade by surveying the Protein Data Bank and the EBI AlphaFold databases. Investigations performed in the last decade have provided structural information on essentially all players involved in the process. Indeed, the initial characterization of specific and rather canonical domains has been progressively extended to complicated multidomain proteins. Recently, the application of cryogenic electron microscopy techniques has unraveled the structural features of highly complex coagulation factors, which has led to enhanced understanding. This review initially focuses on the structure of the individual factors as a function of their involvement in intrinsic, extrinsic, and common pathways. A specific emphasis is given to what is known or unknown on the structural basis of each step of the cascade. Available data providing clues on the structural recognition of the factors involved in the functional partnerships of the pathways are illustrated. Recent structures of important complexes formed by these proteins with regulators are described, focusing on the drugs used as anticoagulants and on their reversal agents. Finally, we highlight the different roles that innovative biomolecules such as aptamers may have in the regulation of the cascade.

6.
Nucleic Acids Res ; 51(16): 8880-8890, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37503836

RESUMEN

Ligand/protein molecular recognition involves a dynamic process, whereby both partners require a degree of structural plasticity to regulate the binding/unbinding event. Here, we present the characterization of the interaction between a highly dynamic G-rich oligonucleotide, M08s-1, and its target protein, human α-thrombin. M08s-1 is the most active anticoagulant aptamer selected thus far. Circular dichroism and gel electrophoresis analyses indicate that both intramolecular and intermolecular G-quadruplex structures are populated in solution. The presence of thrombin stabilises the antiparallel intramolecular chair-like G-quadruplex conformation, that provides by far the main contribution to the biological activity of the aptamer. The crystal structure of the thrombin-oligonucleotide complex reveals that M08s-1 adopts a kinked structural organization formed by a G-quadruplex domain and a long duplex module, linked by a stretch of five purine bases. The quadruplex motif hooks the exosite I region of thrombin and the duplex region is folded towards the surface of the protein. This structural feature, which has never been observed in other anti-exosite I aptamers with a shorter duplex motif, hinders the approach of a protein substrate to the active site region and may well explain the significant increase in the anticoagulant activity of M08s-1 compared to the other anti-exosite I aptamers.


Asunto(s)
Anticoagulantes , Aptámeros de Nucleótidos , Trombina , Humanos , Anticoagulantes/química , Aptámeros de Nucleótidos/química , Dicroismo Circular , G-Cuádruplex , Guanina/química , Trombina/química
7.
Dalton Trans ; 52(21): 6992-6996, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37199244

RESUMEN

The reaction of the cytotoxic compound dirhodium tetraacetate with a B-DNA double helical dodecamer was studied by X-ray crystallography and mass spectrometry. The structure of the dirhodium/DNA adduct reveals a dimetallic center binding to an adenine via axial coordination. Complementary information has been gained through ESI MS measurements. Comparison between the present data and those previously obtained for cisplatin indicates that the two metallodrugs react with this DNA dodecamer in a significantly different fashion.


Asunto(s)
ADN Forma B , Cristalografía por Rayos X , ADN/química , Espectrometría de Masas
8.
Inorg Chem ; 62(2): 675-678, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36602395

RESUMEN

The molecular mechanism of how human serum transferrin (hTF) recognizes cisplatin at the atomic level is still unclear. Here, we report the molecular structure of the adduct formed upon the reaction of hTF with cisplatin. Pt binds the side chain of Met256 (at the N-lobe), without altering the protein overall conformation.


Asunto(s)
Cisplatino , Transferrina , Humanos , Cisplatino/metabolismo , Transferrina/química , Hierro/química , Conformación Proteica , Unión Proteica , Receptores de Transferrina/química , Receptores de Transferrina/metabolismo
9.
Mol Ther Nucleic Acids ; 30: 585-594, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36457701

RESUMEN

Despite their unquestionable properties, oligonucleotide aptamers display some drawbacks that continue to hinder their applications. Several strategies have been undertaken to overcome these weaknesses, using thrombin binding aptamers as proof-of-concept. In particular, the functionalization of a thrombin exosite I binding aptamer (TBA) with aromatic moieties, e.g., naphthalene dimides (N) and dialkoxynaphthalenes (D), attached at the 5' and 3' ends, respectively, proved to be highly promising. To obtain a molecular view of the effects of these modifications on aptamers, we performed a crystallographic analysis of one of these engineered oligonucleotides (TBA-NNp/DDp) in complex with thrombin. Surprisingly, three of the four examined crystallographic structures are ternary complexes in which thrombin binds a TBA-NNp/DDp molecule at exosite II as well as at exosite I, highlighting the ability of this aptamer, differently from unmodified TBA, to also recognize a localized region of exosite II. This novel ability is strictly related to the solvophobic behavior of the terminal modifications. Studies were also performed in solution to examine the properties of TBA-NNp/DDp in a crystal-free environment. The present results throw new light on the importance of appendages inducing a pseudo-cyclic charge-transfer structure in nucleic acid-based ligands to improve the interactions with proteins, thus considerably widening their potentialities.

10.
Pharmaceutics ; 14(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36432648

RESUMEN

Antibiotic resistance is an important and emerging alarm for public health that requires development of new potential antibacterial strategies. In recent years, nanoscale materials have emerged as an alternative way to fight pathogens. Many researchers have shown great interest in nanoparticles (NPs) using noble metals, such as silver, gold, and platinum, even though numerous nanomaterials have shown toxicity. To overcome the problem of toxicity, nanotechnology merged with green chemistry to synthesize nature-friendly nanoparticles from plants. Here, we describe the synthesis of NPs using silver (AgNPs) and platinum (PtNPs) alone or in combination (AgPtNPs) in the presence of Ocimum basilicum (O. basilicum) leaf extract. O. basilicum is a well-known medicinal plant with antibacterial compounds. A preliminary chemical-physical characterization of the extract was conducted. The size, shape and elemental analysis were carried out using UV-Visible spectroscopy, dynamic light scattering (DLS), and zeta potential. Transmission electron microscopy (TEM) confirmed polydisperse NPs with spherical shape. The size of the particles was approximately 59 nm, confirmed by DLS analysis, and the polydisperse index was 0.159. Fourier transform infrared (FTIR) demonstrated an effective and selective capping of the phytoconstituents on the NPs. The cytotoxic activities of AgNPs, PtNPs and AgPtNPs were assessed on different epithelial cell models, using the 3-[4.5-dimethylthiazol-2-yl]-2.5-diphenyltetrazolium bromide (MTT) cell proliferation assay, and discovered low toxicity, with a cell viability of 80%. The antibacterial potential of the NPs was evaluated against Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), Klebsiella pneumonia (K. pneumoniae), and Staphylococcus aureus (S. aureus) strains. Minimum inhibitory concentration (MIC) assays showed AgPtNP activity till the least concentration of NPs (3.15-1.56 µg/mL) against ATCC, MS, and MDR E. coli, E. faecalis, and S. aureus and the Kirby-Bauer method showed that AgPtNPs gave a zone of inhibition for Gram-positive and Gram-negative bacteria in a range of 9-25 mm. In addition, we obtained AgPtNP synergistic activity in combination with vancomycin or ampicillin antibiotics. Taken together, these results indicate that bimetallic nanoparticles, synthesized from O. basilicum leaf extract, could represent a natural, ecofriendly, cheap, and safe method to produce alternative antibacterial strategies with low cytotoxicity.

11.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35955913

RESUMEN

Human angiogenin (ANG) is a 14-kDa ribonuclease involved in different pathophysiological processes including tumorigenesis, neuroprotection, inflammation, innate immunity, reproduction, the regeneration of damaged tissues and stress cell response, depending on its intracellular localization. Under physiological conditions, ANG moves to the cell nucleus where it enhances rRNA transcription; conversely, recent reports indicate that under stress conditions, ANG accumulates in the cytoplasmic compartment and modulates the production of tiRNAs, a novel class of small RNAs that contribute to the translational inhibition and recruitment of stress granules (SGs). To date, there is still limited and controversial experimental evidence relating to a hypothetical role of ANG in the epidermis, the outermost layer of human skin, which is continually exposed to external stressors. The present study collects compelling evidence that endogenous ANG is able to modify its subcellular localization on HaCaT cells, depending on different cellular stresses. Furthermore, the use of recombinant ANG allowed to determine as this special enzyme is effectively able to counter at various levels the alterations of cellular homeostasis in HaCaT cells, actually opening a new vision on the possible functions that this special enzyme can support also in the stress response of human skin.


Asunto(s)
ARN de Transferencia , Ribonucleasas , Humanos , Queratinocitos/metabolismo , Estrés Oxidativo , ARN de Transferencia/genética , Ribonucleasa Pancreática/metabolismo
12.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563186

RESUMEN

Aptamers are synthetic molecules of different natures (mostly, DNA or RNA) that recognize a target molecule with high affinity and specificity [...].


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Nucleótidos/química , ADN , Técnica SELEX de Producción de Aptámeros
13.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34639143

RESUMEN

Thrombin is the key enzyme of the entire hemostatic process since it is able to exert both procoagulant and anticoagulant functions; therefore, it represents an attractive target for the developments of biomolecules with therapeutic potential. Thrombin can perform its many functional activities because of its ability to recognize a wide variety of substrates, inhibitors, and cofactors. These molecules frequently are bound to positively charged regions on the surface of protein called exosites. In this review, we carried out extensive analyses of the structural determinants of thrombin partnerships by surveying literature data as well as the structural content of the Protein Data Bank (PDB). In particular, we used the information collected on functional, natural, and synthetic molecular ligands to define the anatomy of the exosites and to quantify the interface area between thrombin and exosite ligands. In this framework, we reviewed in detail the specificity of thrombin binding to aptamers, a class of compounds with intriguing pharmaceutical properties. Although these compounds anchor to protein using conservative patterns on its surface, the present analysis highlights some interesting peculiarities. Moreover, the impact of thrombin binding aptamers in the elucidation of the cross-talk between the two distant exosites is illustrated. Collectively, the data and the work here reviewed may provide insights into the design of novel thrombin inhibitors.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Hemostáticos/metabolismo , Trombina/metabolismo , Animales , Aptámeros de Nucleótidos/química , Sitios de Unión , Hemostáticos/química , Humanos , Ligandos , Modelos Moleculares , Unión Proteica , Especificidad por Sustrato , Trombina/química
14.
Int J Biol Macromol ; 181: 858-867, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33864869

RESUMEN

The long-range communication between the two exosites of human α-thrombin (thrombin) tightly modulates the protein-effector interactions. Duplex/quadruplex aptamers represent an emerging class of very effective binders of thrombin. Among them, NU172 and HD22 aptamers are at the forefront of exosite I and II recognition, respectively. The present study investigates the simultaneous binding of these two aptamers by combining a structural and dynamics approach. The crystal structure of the ternary complex formed by the thrombin with NU172 and HD22_27mer provides a detailed view of the simultaneous binding of these aptamers to the protein, inspiring the design of novel bivalent thrombin inhibitors. The crystal structure represents the starting model for molecular dynamics studies, which point out the cooperation between the binding at the two exosites. In particular, the binding of an aptamer to its exosite reduces the intrinsic flexibility of the other exosite, that preferentially assumes conformations similar to those observed in the bound state, suggesting a predisposition to interact with the other aptamer. This behaviour is reflected in a significant increase of the anticoagulant activity of NU172 when the inactive HD22_27mer is bound to exosite II, providing a clear evidence of the synergic action of the two aptamers.


Asunto(s)
Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Trombina/química , Trombina/metabolismo , Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Cristalografía por Rayos X , Fibrinógeno/metabolismo , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Factores de Tiempo
15.
Int J Biol Macromol ; 182: 659-668, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33848550

RESUMEN

The superfamily of vertebrate ribonucleases, a large group of evolutionarily related proteins, continues to provide interesting structural and functional information. In particular, the crystal structure of SS-RNase-2 from Salmo salar (SS2), here presented, has revealed a novel auto-inhibition mechanism that enriches the number of inhibition strategies observed in some members of the family. Within an essentially unmodified RNase folding, the SS2 active site cleft is in part obstructed by the collapse of an extra pentapeptide inserted in the C-terminal region. This unexpected intrusion alters the organization of the catalytic triad by pushing one catalytic histidine off the pocket. Possible mechanisms to remove the active site obstruction have also been studied through the production of two mutants that provide useful information on the functionality of this intriguing version of the ribonuclease superfamily.


Asunto(s)
Proteínas de Peces/química , Ribonucleasas/química , Animales , Evolución Molecular , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Dominios Proteicos , Pliegue de Proteína , Ribonucleasas/genética , Ribonucleasas/metabolismo , Salmo salar/metabolismo
16.
Mol Ther Nucleic Acids ; 23: 863-871, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33614235

RESUMEN

Post-SELEX modification of DNA aptamers is an established strategy to improve their affinity or inhibitory characteristics. In this study, we examined the possibility of increasing the recognition interface between the thrombin-binding aptamer HD1 (TBA) and thrombin by adding a chemically modified side chain to selected nucleotide residues. A panel of 22 TBA variants with N3-modified residues T3 and T12 was prepared by a two-step modification procedure. Aptamers were characterized by a combination of biophysical and biochemical methods. We identified mutants with enhanced affinity and improved anticoagulant activity. The crystal structures of thrombin complexes with three selected modified variants revealed that the modified pyrimidine base invariably allocates in proximity to thrombin residues Tyr76 and Ile82 due to the directing role of the unmodified TT loop. The modifications induced an increase in the contact areas between thrombin and the modified TBAs. Comparative analysis of the structural, biochemical, and biophysical data suggests that the non-equivalent binding modes of the mutants with thrombin in the T3- and T12-modified series account for the observed systematic differences in their affinity characteristics. In this study, we show that extending the recognition surface between the protein and modified aptamers is a promising approach that may improve characteristics of aptamer ligands.

17.
J Biomol Struct Dyn ; 39(6): 2199-2209, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32202471

RESUMEN

Human α-thrombin (thrombin) is a multifunctional enzyme that plays a pivotal role in the coagulation pathway. Thrombin activity can be effectively modulated by G-quadruplex-based oligonucleotide aptamers that specifically interact with the two positively charged regions (exosites I and II) on the protein surface. Although insightful atomic-level snapshots of the recognition between thrombin and aptamers have been recently achieved through crystallographic analyses, some dynamic aspects of this interaction have not been fully characterized. We here report molecular dynamics simulations of thrombin in different association states: ligand-free and binary/ternary complexes with the aptamers TBA (at exosite I) and HD22_27mer (at exosite II). The simulations carried out on the binary and ternary complexes formed by thrombin with these aptamers provide a dynamic view of the interactions that stabilize them in a crystal-free environment. Interestingly, the analysis of the dynamics of the exosites in different thrombin binding states clearly indicates that the HD22_27mer binding at the exosite II favours conformations of exosite I that are prone to the TBA binding. Similar effects are observed upon the binding of TBA to the exosite I. These observations provide an atomic-level picture of the exosite inter-communication in thrombin and explain the experimentally detected cooperativity of the TBA/HD22_27mer binding.


Asunto(s)
Aptámeros de Nucleótidos , Trombina , Aptámeros de Nucleótidos/metabolismo , Sitios de Unión , Humanos , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Trombina/metabolismo
18.
Chemistry ; 26(43): 9589-9597, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32363791

RESUMEN

The replacement of one or more nucleotide residues in the potent α-thrombin-binding aptamer NU172 with hexitol-based nucleotides has been devised to study the effect of these substitutions on the physicochemical and functional properties of the anticoagulant agent. The incorporation of single hexitol nucleotides at the T9 and G18 positions of NU172 substantially retained the physicochemical features of the parent oligonucleotide, as a result of the biomimetic properties of the hexitol backbone. Importantly, the NU172-TH 9 mutant exhibited a higher binding affinity toward human α-thrombin than the native aptamer and an improved stability even after 24 h in 90 % human serum, with a significant increase in the estimated half-life. The anticoagulant activity of the modified oligonucleotide was also found to be slightly preferable to NU172. Overall, these results confirm the potential of hexitol nucleotides as biomimetic agents, while laying the foundations for the development of NU172-inspired α-thrombin-binding aptamers.


Asunto(s)
Anticoagulantes/química , Aptámeros de Nucleótidos/química , Alcoholes del Azúcar/química , Trombina/química , Humanos , Relación Estructura-Actividad
19.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 11): 707-713, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31702584

RESUMEN

Domain swapping is a widespread oligomerization process that is observed in a large variety of protein families. In the large superfamily of substrate-binding proteins, non-monomeric members have rarely been reported. The arginine-binding protein from Thermotoga maritima (TmArgBP), a protein endowed with a number of unusual properties, presents a domain-swapped structure in its dimeric native state in which the two polypeptide chains mutually exchange their C-terminal helices. It has previously been shown that mutations in the region connecting the last two helices of the TmArgBP structure lead to the formation of a variety of oligomeric states (monomers, dimers, trimers and larger aggregates). With the aim of defining the structural determinants of domain swapping in TmArgBP, the monomeric form of the P235GK mutant has been structurally characterized. Analysis of this arginine-bound structure indicates that it consists of a closed monomer with its C-terminal helix folded against the rest of the protein, as typically observed for substrate-binding proteins. Notably, the two terminal helices are joined by a single nonhelical residue (Gly235). Collectively, the present findings indicate that extending the hinge region and conferring it with more conformational freedom makes the formation of a closed TmArgBP monomer possible. On the other hand, the short connection between the helices may explain the tendency of the protein to also adopt alternative oligomeric states (dimers, trimers and larger aggregates). The data reported here highlight the importance of evolutionary control to avoid the uncontrolled formation of heterogeneous and potentially harmful oligomeric species through domain swapping.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Thermotoga maritima/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Cristalización , Mutación/genética , Unión Proteica , Homología Estructural de Proteína
20.
Nucleic Acids Res ; 46(22): 12177-12185, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30357392

RESUMEN

Despite aptamers are very promising alternative to antibodies, very few of them are under clinical trials or are used as drugs. Among them, NU172 is currently in Phase II as anticoagulant in heart disease treatments. It inhibits thrombin activity much more effectively than TBA, the best-known thrombin binding aptamer. The crystal structure of thrombin-NU172 complex reveals a bimodular duplex/quadruplex architecture for the aptamer, which binds thrombin exosite I through a highly complementary surface involving all three loops of the G-quadruplex module. Although the duplex domain does not interact directly with thrombin, the features of the duplex/quadruplex junction and the solution data on two newly designed NU172 mutants indicate that the duplex moiety is important for the optimization of the protein-ligand interaction and for the inhibition of the enzyme activity. Our work discloses the structural features determining the inhibition of thrombin by NU172 and put the basis for the design of mutants with improved properties.


Asunto(s)
Aptámeros de Nucleótidos/química , Fibrinolíticos/química , Trombina/química , Secuencias de Aminoácidos , Anticoagulantes/química , Dicroismo Circular , Cristalografía por Rayos X , Fibrinógeno/química , G-Cuádruplex , Humanos , Ligandos , Modelos Moleculares , Mutación , Oligonucleótidos/química , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...