Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Mol Biol Lett ; 28(1): 86, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880612

RESUMEN

BACKGROUND: Membrane rafts play a crucial role in the regulation of many important biological processes. Our previous data suggest that specific interactions of flotillins with MPP1 are responsible for membrane raft domain organization and regulation in erythroid cells. Interaction of the flotillin-based protein network with specific membrane components underlies the mechanism of raft domain formation and regulation, including in cells with low expression of MPP1. METHODS: We sought to identify other flotillin partners via the immobilized recombinant flotillin-2-based affinity approach and mass spectrometry technique. The results were further confirmed via immunoblotting and via co-immunoprecipitation. In order to study the effect of the candidate protein on the physicochemical properties of the plasma membrane, the gene was knocked down via siRNA, and fluorescence lifetime imaging microscopy and spot-variation fluorescence correlation spectroscopy was employed. RESULTS: EFR3A was identified as a candidate protein that interacts with flotillin-2. Moreover, this newly discovered interaction was demonstrated via overlay assay using recombinant EFR3A and flotillin-2. EFR3A is a stable component of the detergent-resistant membrane fraction of HeLa cells, and its presence was sensitive to the removal of cholesterol. While silencing the EFR3A gene, we observed decreased order of the plasma membrane of living cells or giant plasma membrane vesicles derived from knocked down cells and altered mobility of the raft probe, as indicated via fluorescence lifetime imaging microscopy and spot-variation fluorescence correlation spectroscopy. Moreover, silencing of EFR3A expression was found to disturb epidermal growth factor receptor and phospholipase C gamma phosphorylation and affect epidermal growth factor-dependent cytosolic Ca2+ concentration. CONCLUSIONS: Altogether, our results suggest hitherto unreported flotillin-2-EFR3A interaction, which might be responsible for membrane raft organization and regulation. This implies participation of this interaction in the regulation of multiple cellular processes, including those connected with cell signaling which points to the possible role in human health, in particular human cancer biology.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Microdominios de Membrana , Proteínas de la Membrana , Humanos , Membrana Celular/metabolismo , Factor de Crecimiento Epidérmico , Células HeLa , Unión Proteica , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo
2.
Biol Res ; 56(1): 32, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37312227

RESUMEN

BACKGROUND: Melanoma is one of the most aggressive and deadliest skin tumor. Cholesterol content in melanoma cells is elevated, and a portion of it accumulates into lipid rafts. Therefore, the plasma membrane cholesterol and its lateral organization might be directly linked with tumor development. ATP Binding Cassette A1 (ABCA1) transporter modulates physico-chemical properties of the plasma membrane by modifying cholesterol distribution. Several studies linked the activity of the transporter with a different outcome of tumor progression depending on which type. However, no direct link between human melanoma progression and ABCA1 activity has been reported yet. METHODS: An immunohistochemical study on the ABCA1 level in 110 patients-derived melanoma tumors was performed to investigate the potential association of the transporter with melanoma stage of progression and prognosis. Furthermore, proliferation, migration and invasion assays, extracellular-matrix degradation assay, immunochemistry on proteins involved in migration processes and a combination of biophysical microscopy analysis of the plasma membrane organization of Hs294T human melanoma wild type, control (scrambled), ABCA1 Knockout (ABCA1 KO) and ABCA1 chemically inactivated cells were used to study the impact of ABCA1 activity on human melanoma metastasis processes. RESULTS: The immunohistochemical analysis of clinical samples showed that high level of ABCA1 transporter in human melanoma is associated with a poor prognosis. Depletion or inhibition of ABCA1 impacts invasion capacities of aggressive melanoma cells. Loss of ABCA1 activity partially prevented cellular motility by affecting active focal adhesions formation via blocking clustering of phosphorylated focal adhesion kinases and active integrin ß3. Moreover, ABCA1 activity regulated the lateral organization of the plasma membrane in melanoma cells. Disrupting this organization, by increasing the content of cholesterol, also blocked active focal adhesion formation. CONCLUSION: Human melanoma cells reorganize their plasma membrane cholesterol content and organization via ABCA1 activity to promote motility processes and aggressiveness potential. Therefore, ABCA1 may contribute to tumor progression and poor prognosis, suggesting ABCA1 to be a potential metastatic marker in melanoma.


Asunto(s)
Melanoma , Humanos , Membrana Celular , Análisis por Conglomerados , Transportador 1 de Casete de Unión a ATP
3.
Biol. Res ; 56: 32-32, 2023. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1513744

RESUMEN

BACKGROUND: Melanoma is one of the most aggressive and deadliest skin tumor. Cholesterol content in melanoma cells is elevated, and a portion of it accumulates into lipid rafts. Therefore, the plasma membrane cholesterol and its lateral organization might be directly linked with tumor development. ATP Binding Cassette A1 (ABCA1) transporter modulates physico-chemical properties of the plasma membrane by modifying cholesterol distribution. Several studies linked the activity of the transporter with a different outcome of tumor progression depending on which type. However, no direct link between human melanoma progression and ABCA1 activity has been reported yet. METHODS: An immunohistochemical study on the ABCA1 level in 110 patients-derived melanoma tumors was performed to investigate the potential association of the transporter with melanoma stage of progression and prognosis. Furthermore, proliferation, migration and invasion assays, extracellular-matrix degradation assay, immunochemistry on proteins involved in migration processes and a combination of biophysical microscopy analysis of the plasma membrane organization of Hs294T human melanoma wild type, control (scrambled), ABCA1 Knockout ( ABCA1 KO) and ABCA1 chemically inactivated cells were used to study the impact of ABCA1 activity on human melanoma metastasis processes. RESULTS: The immunohistochemical analysis of clinical samples showed that high level of ABCA1 transporter in human melanoma is associated with a poor prognosis. Depletion or inhibition ofABCA1 impacts invasion capacities of aggressive melanoma cells. Loss of ABCA1 activity partially prevented cellular motility by affecting active focal adhesions formation via blocking clustering of phosphorylated focal adhesion kinases and active integrin ß3. Moreover, ABCA1 activity regulated the lateral organization of the plasma membrane in melanoma cells. Disrupting this organization, by increasing the content of cholesterol, also blocked active focal adhesion formation. CONCLUSION: Human melanoma cells reorganize their plasma membrane cholesterol content and organization via ABCA1 activity to promote motility processes and aggressiveness potential. Therefore, ABCA1 may contribute to tumor progression and poor prognosis, suggesting ABCA1 to be a potential metastatic marker in melanoma.


Asunto(s)
Humanos , Melanoma , Análisis por Conglomerados , Membrana Celular , Transportador 1 de Casete de Unión a ATP
4.
Nanomaterials (Basel) ; 12(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36144961

RESUMEN

Colloidal semiconductor quantum dots (QD), as well as other nanoparticles, are useful in cell studies as fluorescent labels. They may also be used as more active components in various cellular assays, serving as sensors or effectors. However, not all QDs are biocompatible. One of the main problems is their outer coat, which needs to be stable and to sustain hydrophilicity. Here we show that purpose-designed CdSe QDs, covered with a Puf protein, can be efficiently accumulated by HeLa cells. The uptake was measurable after a few hours of incubation with nanoparticles and most of the fluorescence was localised in the internal membrane system of the cell, including the endoplasmic reticulum and the Golgi apparatus. The fluorescence properties of QDs were mostly preserved, although the maximum emission wavelength was slightly shifted, and the fluorescence lifetime was shortened, indicating partial sensitivity of the QDs to the cell microenvironment. QD accumulation resulted in a decrease in cell viability, which was attributed to disturbance of endoplasmic reticulum performance.

5.
Cells ; 11(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35159121

RESUMEN

MPP1 (membrane palmitoylated protein 1) belongs to the MAGUK (membrane-associated guanylate kinase homologs) scaffolding protein family. These proteins organize molecules into complexes, thereby maintaining the structural heterogeneity of the plasma membrane (PM). Our previous results indicated that direct, high-affinity interactions between MPP1 and flotillins (raft marker proteins) display dominant PM-modulating capacity in erythroid cells. In this study, with high-resolution structured illuminated imaging, we investigated how these complexes are organized within erythroid cells on the nanometer scale. Furthermore, using other spectroscopic techniques, namely fluorescence recovery after photobleaching (FRAP) and spot-variation fluorescence correlation spectroscopy (svFCS), we revealed that MPP1 acts as a key raft-capturing molecule, regulating temporal immobilization of flotillin-based nanoclusters, and controls local concentration and confinement of sphingomyelin and Thy-1 in raft nanodomains. Our data enabled us to uncover molecular principles governing the key involvement of MPP1-flotillin complexes in the dynamic nanoscale organization of PM of erythroid cells.


Asunto(s)
Células Eritroides , Proteínas de la Membrana , Membrana Celular/metabolismo , Células Eritroides/metabolismo , Proteínas de la Membrana/metabolismo
6.
Biochim Biophys Acta Biomembr ; 1863(12): 183730, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34419486

RESUMEN

The specific structure and composition of the cell plasma membrane (PM) is crucial for many cellular processes and can be targeted by various substances with potential medical applications. In this context, biosurfactants (BS) constitute a promising group of natural compounds that possess several biological functions, including anticancer activity. Despite the efficiency of BS, their mode of action had never been elucidated before. Here, we demonstrate the influence of cyclic lipopeptide surfactin (SU) on the PM of CHO-K1 cells. Both FLIM and svFCS experiments show that even a low concentration of SU causes significant changes in the membrane fluidity and dynamic molecular organization. Further, we demonstrate that SU causes a relevant dose-dependent reduction of cellular cholesterol by extracting it from the PM. Finally, we show that CHO-25RA cells characterized by increased cholesterol levels are more sensitive to SU treatment than CHO-K1 cells. We propose that sterols organizing the PM raft nanodomains, constitute a potential target for SU and other biosurfactants. In our opinion, the anticancer activity of biosurfactants is directly related with the higher cholesterol content found in many cancer cells.


Asunto(s)
Lipopéptidos/química , Péptidos Cíclicos/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Células CHO , Membrana Celular/efectos de los fármacos , Colesterol/química , Cricetulus , Humanos , Lipopéptidos/farmacología , Fluidez de la Membrana/efectos de los fármacos , Simulación de Dinámica Molecular , Péptidos Cíclicos/farmacología
7.
Membranes (Basel) ; 11(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209140

RESUMEN

Extensive studies showed the crucial role of ATP binding cassette (ABC) transporter ABCA1 in organizing the lipid microenvironment at the plasma membrane (PM) of living cells. However, the exact role of this protein in terms of lipid redistribution and lateral reorganization of the PM is still being discussed. Here, we took advantage of the spot variation fluorescence correlation spectroscopy (svFCS) to investigate the molecular dynamics of the ABCA1 expressed at the PM of Chinese hamster ovary cells (CHO-K1). We confirmed that this protein is strongly confined into the raft nanodomains. Next, in agreement with our previous observations, we showed that amphotericin B does not affect the diffusion properties of an active ABCA1 in contrary to inactive mutant ABCA1MM. We also evidenced that ApoA1 influences the molecular diffusion properties of ABCA1. Finally, we showed that the molecular confinement of ABCA1 depends on the cholesterol content in the PM, but presumably, this is not the only factor responsible for that. We concluded that the molecular dynamics of ABCA1 strongly depends on its activity and the PM composition. We hypothesize that other factors than lipids (i.e., proteins) are responsible for the strong confinement of ABCA1 in PM nanodomains which possibility has to be elucidated.

8.
J Vis Exp ; (165)2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33252108

RESUMEN

Dynamic biological processes in living cells, including those associated with plasma membrane organization, occur on various spatial and temporal scales, ranging from nanometers to micrometers and microseconds to minutes, respectively. Such a broad range of biological processes challenges conventional microscopy approaches. Here, we detail the procedure for implementing spot variation Fluorescence Correlation Spectroscopy (svFCS) measurements using a classical fluorescence microscope that has been customized. The protocol includes a specific performance check of the svFCS setup and the guidelines for molecular diffusion measurements by svFCS on the plasma membrane of living cells under physiological conditions. Additionally, we provide a procedure for disrupting plasma membrane raft nanodomains by cholesterol oxidase treatment and demonstrate how these changes in the lateral organization of the plasma membrane might be revealed by svFCS analysis. In conclusion, this fluorescence-based method can provide unprecedented details on the lateral organization of the plasma membrane with the appropriate spatial and temporal resolution.


Asunto(s)
Membrana Celular/metabolismo , Espectrometría de Fluorescencia , Animales , Células COS , Calibración , Supervivencia Celular , Chlorocebus aethiops , Colesterol/metabolismo , Difusión , Proteínas Fluorescentes Verdes/metabolismo , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo
9.
Cell Mol Biol Lett ; 25: 37, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32647530

RESUMEN

The plasma membrane (PM) spatiotemporal organization is one of the major factors controlling cell signaling and whole-cell homeostasis. The PM lipids, including cholesterol, determine the physicochemical properties of the membrane bilayer and thus play a crucial role in all membrane-dependent cellular processes. It is known that lipid content and distribution in the PM are not random, and their transversal and lateral organization is highly controlled. Mainly sphingolipid- and cholesterol-rich lipid nanodomains, historically referred to as rafts, are extremely dynamic "hot spots" of the PM controlling the function of many cell surface proteins and receptors. In the first part of this review, we will focus on the recent advances of PM investigation and the current PM concept. In the second part, we will discuss the importance of several classes of ABC transporters whose substrates are lipids for the PM organization and dynamics. Finally, we will briefly present the significance of lipid ABC transporters for immune responses.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Membrana Celular/metabolismo , Animales , Transporte Biológico/fisiología , Humanos , Inmunidad/fisiología , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo
10.
Plant Mol Biol ; 82(1-2): 181-92, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23564360

RESUMEN

ATP-binding cassette transporters are involved in the active transport of a wide variety of metabolites in prokaryotes and eukaryotes. One subfamily, the Pleiotropic Drug Resistance (PDR) transporters, or full-size ABCG transporters, are found only in fungi and plants. NtPDR1 was originally identified in Nicotiana tabacum suspension cells (BY2), in which its expression was induced by microbial elicitors. To obtain information on its expression in plants, we generated NtPDR1-specific antibodies and, using Western blotting, found that this transporter is localized in roots, leaves, and flowers and this was confirmed in transgenic plants expressing the ß-glucuronidase reporter gene fused to the NtPDR1 promoter region. Expression was seen in the lateral roots and in the long glandular trichomes of the leaves, stem, and flowers. Western blot analysis and in situ immunolocalization showed NtPDR1 to be localized in the plasma membrane. Induction of NtPDR1 expression by various compounds was tested in N. tabacum BY2 cells. Induction of expression was observed with the hormones methyl jasmonate and naphthalene acetic acid and diterpenes. Constitutive ectopic expression of NtPDR1 in N. tabacum BY2 cells resulted in increased resistance to several diterpenes. Transport tests directly demonstrated the ability of NtPDR1 to transport diterpenes. These data suggest that NtPDR1 is involved in plant defense through diterpene transport.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Membrana Celular/metabolismo , Diterpenos/metabolismo , Nicotiana/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Membrana Celular/efectos de los fármacos , Diterpenos/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Nicotiana/citología , Nicotiana/efectos de los fármacos , Nicotiana/genética
11.
Methods Enzymol ; 519: 277-302, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23280115

RESUMEN

While intrinsic Brownian agitation within a lipid bilayer does homogenize the molecular distribution, the extremely diverse composition of the plasma membrane, in contrast, favors the development of inhomogeneity due to the propensity of such a system to minimize its total free energy. Precisely, deciphering such inhomogeneous organization with appropriate spatiotemporal resolution remains, however, a challenge. In accordance with its ability to accurately measure diffusion parameters, fluorescence correlation spectroscopy (FCS) has been developed in association with innovative experimental strategies to monitor modes of molecular lateral confinement within the plasma membrane of living cells. Here, we describe a method, namely spot variation FCS (svFCS), to decipher the dynamics of the plasma membrane organization. The method is based on questioning the relationship between the diffusion time τ(d) and the squared waist of observation w(2). Theoretical models have been developed to predict how geometrical constraints such as the presence of adjacent or isolated domains affect the svFCS observations. These investigations have allowed significant progress in the characterization of cell membrane lateral organization at the suboptical level, and have provided, for instance, compelling evidence for the in vivo existence of raft nanodomains.


Asunto(s)
Espectrometría de Fluorescencia/métodos , Calibración , Adhesión Celular , Línea Celular , Humanos , Microscopía/métodos
12.
Plant J ; 72(5): 745-57, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22804955

RESUMEN

Pleiotropic drug resistance (PDR) transporters are a group of membrane proteins belonging to the ABCG sub-family of ATP binding cassette (ABC) transporters. There is clear evidence for the involvement of plant ABC transporters in resistance to fungal and bacterial pathogens, but not in the biotic stress response to insect or herbivore attack. Here, we describe a PDR transporter, ABCG5/PDR5, from Nicotiana tabacum. GFP fusion and subcellular fractionation studies revealed that ABCG5/PDR5 is localized to the plasma membrane. Staining of transgenic plants expressing the GUS reporter gene under the control of the ABCG5/PDR5 transcription promoter and immunoblotting of wild-type plants showed that, under standard growth conditions, ABCG5/PDR5 is highly expressed in roots, stems and flowers, but is only expressed at marginal levels in leaves. Interestingly, ABCG5/PDR5 expression is induced in leaves by methyl jasmonate, wounding, pathogen infiltration, or herbivory by Manduca sexta. To address the physiological role of ABCG5/PDR5, N. tabacum plants silenced for the expression of ABCG5/PDR5 were obtained. No phenotypic modification was observed under standard conditions. However, a small increase in susceptibility to the fungus Fusarium oxysporum was observed. A stronger effect was observed in relation to herbivory: silenced plants allowed better growth and faster development of M. sexta larvae than wild-type plants, indicating an involvement of this PDR transporter in resistance to M. sexta herbivory.


Asunto(s)
Manduca/fisiología , Nicotiana/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Acetatos/metabolismo , Acetatos/farmacología , Animales , Secuencia de Bases , Membrana Celular/metabolismo , Clonación Molecular , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Flores/genética , Fusarium/patogenicidad , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Herbivoria , Datos de Secuencia Molecular , Oxilipinas/metabolismo , Oxilipinas/farmacología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/microbiología
13.
J Vis Exp ; (63): e3599, 2012 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-22664619

RESUMEN

Our goal is to obtain a comprehensive description of molecular processes occurring at cellular membranes in different biological functions. We aim at characterizing the complex organization and dynamics of the plasma membrane at single-molecule level, by developing analytic tools dedicated to Single-Particle Tracking (SPT) at high density: Multiple-Target Tracing (MTT). Single-molecule videomicroscopy, offering millisecond and nanometric resolution, allows a detailed representation of membrane organization by accurately mapping descriptors such as cell receptors localization, mobility, confinement or interactions. We revisited SPT, both experimentally and algorithmically. Experimental aspects included optimizing setup and cell labeling, with a particular emphasis on reaching the highest possible labeling density, in order to provide a dynamic snapshot of molecular dynamics as it occurs within the membrane. Algorithmic issues concerned each step used for rebuilding trajectories: peaks detection, estimation and reconnection, addressed by specific tools from image analysis. Implementing deflation after detection allows rescuing peaks initially hidden by neighboring, stronger peaks. Of note, improving detection directly impacts reconnection, by reducing gaps within trajectories. Performances have been evaluated using Monte-Carlo simulations for various labeling density and noise values, which typically represent the two major limitations for parallel measurements at high spatiotemporal resolution. The nanometric accuracy obtained for single molecules, using either successive on/off photoswitching or non-linear optics, can deliver exhaustive observations. This is the basis of nanoscopy methods such as STORM, PALM, RESOLFT or STED, which may often require imaging fixed samples. The central task is the detection and estimation of diffraction-limited peaks emanating from single-molecules. Hence, providing adequate assumptions such as handling a constant positional accuracy instead of Brownian motion, MTT is straightforwardly suited for nanoscopic analyses. Furthermore, MTT can fundamentally be used at any scale: not only for molecules, but also for cells or animals, for instance. Hence, MTT is a powerful tracking algorithm that finds applications at molecular and cellular scales.


Asunto(s)
Membrana Celular/química , Puntos Cuánticos , Algoritmos , Animales , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Difusión , Microscopía por Video/métodos , Método de Montecarlo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo
14.
Biochim Biophys Acta ; 1821(3): 373-80, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21787882

RESUMEN

ABCA1 belongs to the A class of ABC transporter, which is absent in yeast. ABCA1 elicits lipid translocation at the plasma membrane through yet elusive processes. We successfully expressed the mouse Abca1 gene in Saccharomyces cerevisiae. The cloned ABCA1 distributed at the yeast plasma membrane in stable discrete domains that we name MCA (membrane cluster containing ABCA1) and that do not overlap with the previously identified punctate structures MCC (membrane cluster containing Can1p) and MCP (membrane cluster containing Pma1p). By comparison with a nonfunctional mutant, we demonstrated that ABCA1 elicits specific phenotypes in response to compounds known to interact with membrane lipids, such as papuamide B, amphotericin B and pimaricin. The sensitivity of these novel phenotypes to the genetic modification of the membrane lipid composition was studied by the introduction of the cho1 and lcb1-100 mutations involved respectively in phosphatidylserine or sphingolipid biosynthesis in yeast cells. The results, corroborated by the analysis of equivalent mammalian mutant cell lines, demonstrate that membrane composition, in particular its phosphatidylserine content, influences the function of the transporter. We thus have reconstituted in yeast the essential functions associated to the expression of ABCA1 in mammals and characterized new physiological phenotypes prone to genetic analysis. This article is a part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).


Asunto(s)
Transportadoras de Casetes de Unión a ATP/biosíntesis , Anfotericina B/farmacología , Antifúngicos/farmacología , Fosfatidilserinas/fisiología , Saccharomyces cerevisiae/efectos de los fármacos , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Depsipéptidos/farmacología , Expresión Génica , Células HeLa , Humanos , Ratones , Natamicina/farmacología , Fosfatidilserinas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Esfingolípidos/fisiología
15.
Biophys J ; 101(2): 468-76, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21767500

RESUMEN

Steady-state polarization-resolved fluorescence imaging is used to analyze the molecular orientational order behavior of rigidly labeled major histocompatibility complex class I (MHC I) proteins and lipid probes in cell membranes of living cells. These fluorescent probes report the orientational properties of proteins and their surrounding lipid environment. We present a statistical study of the molecular orientational order, modeled as the width of the angular distribution of the molecules, for the proteins in the cell endomembrane and plasma membrane, as well as for the lipid probes in the plasma membrane. We apply this methodology on cells after treatments affecting the actin and microtubule networks. We find in particular opposite orientational order changes of proteins and lipid probes in the plasma membrane as a response to the cytoskeleton disruption. This suggests that MHC I orientational order is governed by its interaction with the cytoskeleton, whereas the plasma membrane lipid order is governed by the local cell membrane morphology.


Asunto(s)
Membrana Celular/metabolismo , Polarización de Fluorescencia/métodos , Colorantes Fluorescentes/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Imagenología Tridimensional/métodos , Lípidos/química , Animales , Anisotropía , Células COS , Chlorocebus aethiops , Proteínas Fluorescentes Verdes/metabolismo , Modelos Moleculares
16.
Sci Signal ; 4(167): ra21, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21467299

RESUMEN

Natural killer (NK) cell tolerance to self is partly ensured by major histocompatibility complex (MHC) class I-specific inhibitory receptors on NK cells, which dampen their reactivity when engaged. However, NK cells that do not detect self MHC class I are not autoreactive. We used dynamic fluorescence correlation spectroscopy to show that MHC class I-independent NK cell tolerance in mice was associated with the presence of hyporesponsive NK cells in which both activating and inhibitory receptors were confined in an actin meshwork at the plasma membrane. In contrast, the recognition of self MHC class I by inhibitory receptors "educated" NK cells to become fully reactive, and activating NK cell receptors became dynamically compartmentalized in membrane nanodomains. We propose that the confinement of activating receptors at the plasma membrane is pivotal to ensuring the self-tolerance of NK cells.


Asunto(s)
Membrana Celular/metabolismo , Células Asesinas Naturales/inmunología , Autotolerancia/inmunología , Transducción de Señal/inmunología , Actinas/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Cartilla de ADN/genética , Citometría de Flujo , Interferón gamma/metabolismo , Células Asesinas Naturales/metabolismo , Ratones , Espectrometría de Fluorescencia
17.
Mol Plant Pathol ; 10(5): 651-63, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19694955

RESUMEN

SUMMARY The behaviour of Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 was investigated in response to fungal and oomycete infections. The importance of NpPDR1 in plant defence was demonstrated for two organs in which NpPDR1 is constitutively expressed: the roots and the petal epidermis. The roots of the plantlets of two lines silenced for NpPDR1 expression were clearly more sensitive than those of controls to the fungal pathogens Botrytis cinerea, Fusarium oxysporum sp., F. oxysporum f. sp. nicotianae, F. oxysporum f. sp. melonis and Rhizoctonia solani, as well as to the oomycete pathogen Phytophthora nicotianae race 0. The Ph gene-linked resistance of N. plumbaginifolia to P. nicotianae race 0 was totally ineffective in NpPDR1-silenced lines. In addition, the petals of the NpPDR1-silenced lines were spotted 15%-20% more rapidly by B. cinerea than were the controls. The rapid induction (after 2-4 days) of NpPDR1 expression in N. plumbaginifolia and N. tabacum mature leaves in response to pathogen presence was demonstrated for the first time with fungi and one oomycete: R. solani, F. oxysporum and P. nicotianae. With B. cinerea, such rapid expression was not observed in healthy mature leaves. NpPDR1 expression was not observed during latent infections of B. cinerea in N. plumbaginifolia and N. tabacum, but was induced when conditions facilitated B. cinerea development in leaves, such as leaf ageing or an initial root infection. This work demonstrates the increased sensitivity of NpPDR1-silenced N. plumbaginifolia plants to all of the fungal and oomycete pathogens investigated.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Botrytis/fisiología , Silenciador del Gen , Nicotiana/genética , Nicotiana/microbiología , Oomicetos/fisiología , Proteínas de Plantas/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Flores/genética , Flores/microbiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucuronidasa/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/microbiología
18.
FASEB J ; 23(6): 1775-85, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19151332

RESUMEN

The ABCA1 transporter orchestrates cellular lipid homeostasis by promoting the release of cholesterol to plasmatic acceptors. The molecular mechanism is, however, unknown. We report here on the biophysical analysis in living HeLa cells of the ABCA1 lipid microenvironment at the plasma membrane. The modifications of membrane attributes induced by ABCA1 were assessed at both the outer and inner leaflet by monitoring either the lifetime of membrane inserted fluorescent lipid analogues by fluorescence lifetime imaging microscopy (FLIM) or, respectively, the membrane translocation of cationic sensors. Analysis of the partitioning of dedicated probes in plasma membrane blebs vesiculated from these cells allowed visualization of ABCA1 partitioning into the liquid disordered-like phase and corroborated the idea that ABCA1 destabilizes the lipid arrangement at the membrane. Specificity was demonstrated by comparison with cells expressing an inactive transporter. The physiological relevance of these modifications was finally demonstrated by the reduced membrane mobility and function of transferrin receptors under the influence of an active ABCA1. Collectively, these data assess that the control of both transversal and lateral lipid distribution at the membrane is the primary function of ABCA1 and positions the effluxes of cholesterol from cell membranes downstream to the redistribution of the sterol into readily extractable membrane pools.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Membrana Celular , Metabolismo de los Lípidos , Lípidos/química , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Membrana Celular/química , Membrana Celular/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Potenciales de la Membrana/fisiología , Microscopía Fluorescente/métodos , Datos de Secuencia Molecular , Receptores de Transferrina/metabolismo
19.
Plant Mol Biol ; 66(1-2): 165-75, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18034327

RESUMEN

ATP-binding cassette transporters of the pleiotropic drug resistance (PDR) subfamily are composed of five clusters. We have cloned a gene, NpPDR2, belonging to the still uncharacterized cluster IV from Nicotiana plumbaginifolia. NpPDR2 transcripts were found in the roots and mature flowers. In the latter, NpPDR2 expression was restricted to the style and only after pollination. A 1.5-kb genomic sequence containing the putative NpPDR2 transcription promoter was fused to the beta-glucuronidase reporter gene. The GUS expression pattern confirmed the RT-PCR results that NpPDR2 was expressed in roots and the flower style and showed that it was localized around the conductive tissues. Unlike other PDR genes, NpPDR2 expression was not induced in leaf tissues by none of the hormones typically involved in biotic and abiotic stress response. Moreover, unlike NpPDR1 known to be involved in biotic stress response, NpPDR2 expression was not induced in the style upon Botrytis cinerea infection. In N. plumbaginifolia plants in which NpPDR2 expression was prevented by RNA interference, no unusual phenotype was observed, including at the flowering stage, which suggests that NpPDR2 is not essential in the reproductive process under the tested conditions.


Asunto(s)
Resistencia a Medicamentos/genética , Genes de Plantas , Nicotiana/genética , Secuencia de Bases , Cartilla de ADN , ADN Complementario , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
FEBS Lett ; 580(4): 1123-30, 2006 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-16506311

RESUMEN

Among the ABC transporters, the pleiotropic drug resistance (PDR) family is particular in that its members are found only in fungi and plants and have a reverse domain organization, i.e., the nucleotide binding domain precedes the transmembrane domain. In Arabidopsis and rice, for which the full genome has been sequenced, the family of plant ABC transporters contains 15 and 23 PDR genes, respectively, which can be tentatively organized using the sequence data into five subfamilies. Most of the plant PDR genes so far characterized belong to subfamily I and have been shown to be involved in responses to abiotic and biotic stress, in the latter case, probably by transporting antimicrobial secondary metabolites to the cell surface. Only a single subfamily II member has been characterized. Induction of its expression by iron deficiency suggests its involvement in iron deficiency stress, thus, enlightening a new physiological role for a PDR gene.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/fisiología , Plantas/metabolismo , Filogenia , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA