Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Plant Physiol ; 268: 153560, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34798464

RESUMEN

The biosynthesis of putrescine is mainly driven by arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). Hence, in this study, we generated independent ADC and ODC transgenic silenced tomato lines (SilADC and SilODC, respectively) to test the effect of defective ADC and ODC gene expression on root development under nitrate (NN) or ammonium (NA) conditions. The results showed that SilODC seedlings displayed an increase in ADC expression that led to polyamine accumulation, suggesting a compensatory effect of ADC. However, this effect was not observed in SilADC seedlings. These pathways are involved in different growth processes. The SilADC seedlings showed an increase in fresh weight, shoot length, lateral root number and shoot:root ratio under the NN source and an enhancement in fresh weight, and shoot and root length under NA conditions. However, SilODC seedlings displayed greater weight and shoot length under the NN source, whereas a decrease in lateral root density was found under NA conditions. Moreover, two overexpressed ODC lines were generated to check the relevance of the compensatory effect of the ADC pathway when ODC was silenced. These overexpressed lines showed not only an enhancement of almost all the studied growth parameters under both N sources but also an amelioration of ammonium syndrome under NA conditions. Together, these results reflect the importance of both pathways in plant growth, particularly ODC silencing, which requires compensation by ADC induction.


Asunto(s)
Nitrógeno , Raíces de Plantas , Putrescina/biosíntesis , Solanum lycopersicum , Compuestos de Amonio , Vías Biosintéticas , Carboxiliasas/genética , Carboxiliasas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Nitratos , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Plantones/genética , Plantones/crecimiento & desarrollo
2.
Pest Manag Sci ; 73(5): 1017-1023, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27558547

RESUMEN

BACKGROUND: Developments of alternatives to the use of chemical pesticides to control pests are focused on the induction of natural plant defences. The study of new compounds based on liquid bioassimilable sulphur and its effect as an inductor of the immune system of plants would provide an alternative option to farmers to enhance plant resistance against pathogen attacks such as powdery mildew. In order to elucidate the efficacy of this compound in tomato against powdery mildew, we tested several treatments: curative foliar, preventive foliar, preventive in soil drench and combining preventive in soil drench and curative foliar. RESULTS: In all cases, treated plants showed lower infection development, better physiological parameters and a higher level of chlorophyll. We also observed better performance in parameters involved in plant resistance such as antioxidant response, callose deposition and hormonal levels. CONCLUSION: The results indicate that preventive and curative treatments can be highly effective for the prevention and control of powdery mildew in tomato plants. Foliar treatments are able to stop the pathogen development when they are applied as curative. Soil drench treatments induce immune response mechanisms of plants, increasing significantly callose deposition and promoting plant development. © 2016 Society of Chemical Industry.


Asunto(s)
Ascomicetos/efectos de los fármacos , Ascomicetos/fisiología , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/inmunología , Azufre/metabolismo , Azufre/farmacología , Clorofila/metabolismo , Glucanos/metabolismo , Peróxido de Hidrógeno/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo
3.
Front Microbiol ; 7: 1598, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790197

RESUMEN

Mycorrhizal plants are generally quite efficient in coping with environmental challenges. It has been shown that the symbiosis with arbuscular mycorrhizal fungi (AMF) can confer resistance against root and foliar pathogens, although the molecular mechanisms underlying such mycorrhiza-induced resistance (MIR) are poorly understood. Tomato plants colonized with the AMF Rhizophagus irregularis display enhanced resistance against the necrotrophic foliar pathogen Botrytis cinerea. Leaves from arbuscular mycorrhizal (AM) plants develop smaller necrotic lesions, mirrored also by a reduced levels of fungal biomass. A plethora of metabolic changes takes place in AMF colonized plants upon infection. Certain changes located in the oxylipin pathway indicate that several intermediaries are over-accumulated in the AM upon infection. AM plants react by accumulating higher levels of the vitamins folic acid and riboflavin, indolic derivatives and phenolic compounds such as ferulic acid and chlorogenic acid. Transcriptional analysis support the key role played by the LOX pathway in the shoots associated with MIR against B. cinerea. Interestingly, plants that have suffered a short period of nitrogen starvation appear to react by reprogramming their metabolic and genetic responses by prioritizing abiotic stress tolerance. Consequently, plants subjected to a transient nitrogen depletion become more susceptible to B. cinerea. Under these experimental conditions, MIR is severely affected although still functional. Many metabolic and transcriptional responses which are accumulated or activated by MIR such NRT2 transcript induction and OPDA and most Trp and indolic derivatives accumulation during MIR were repressed or reduced when tomato plants were depleted of N for 48 h prior infection. These results highlight the beneficial roles of AMF in crop protection by promoting induced resistance not only under optimal nutritional conditions but also buffering the susceptibility triggered by transient N depletion.

4.
Plant J ; 81(2): 304-15, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25407262

RESUMEN

Cis-(+)-12-oxo-phytodienoic acid (OPDA) is likely to play signaling roles in plant defense that do not depend on its further conversion to the phytohormone jasmonic acid. To elucidate the role of OPDA in Solanum lycopersicum (tomato) plant defense, we have silenced the 12-oxophytodienoate reductase 3 (OPR3) gene. Two independent transgenic tomato lines (SiOPR3-1 and SiOPR3-2) showed significantly reduced OPR3 expression upon infection with the necrotrophic pathogen Botrytis cinerea. Moreover, SiOPR3 plants are more susceptible to this pathogen, and this susceptibility is accompanied by a significant decrease in OPDA levels and by the production of JA-Ile being almost abolished. OPR3 silencing also leads to a major reduction in the expression of other genes of the jasmonic acid (JA) synthesis and signaling pathways after infection. These results confirm that in tomato plants, as in Arabidopsis, OPR3 determines OPDA availability for JA biosynthesis. In addition, we show that an intact JA biosynthetic pathway is required for proper callose deposition, as its pathogen-induced accumulation is reduced in SiOPR3 plants. Interestingly, OPDA, but not JA, treatment restored basal resistance to B. cinerea and induced callose deposition in SiOPR3-1 and SiOPR3-2 transgenic plants. These results provide clear evidence that OPDA by itself plays a major role in the basal defense of tomato plants against this necrotrophic pathogen.


Asunto(s)
Botrytis/fisiología , Compuestos de Diazonio/metabolismo , Glucanos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Piridinas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...