Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 102: 129675, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38417632

RESUMEN

NLRP3 is an intracellular sensor protein that detects a broad range of danger signals and environmental insults. Its activation results in a protective pro-inflammatory response designed to impair pathogens and repair tissue damage via the formation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent secretory release of the pro-inflammatory cytokines IL-1ß and IL-18 as well as to gasdermin d-mediated pyroptotic cell death. Herein, we describe the discovery of a novel indazole series of high affinity, reversible inhibitors of NLRP3 activation through screening of DNA-encoded libraries and the potent lead compound 3 (BAL-0028, IC50 = 25 nM) that was identified directly from the screen. SPR studies showed that compound 3 binds tightly (KD range 104-123 nM) to the NACHT domain of NLRP3. A CADD analysis of the interaction of compound 3 with the NLRP3 NACHT domain proposes a binding site that is distinct from those of ADP and MCC950 and includes specific site interactions. We anticipate that compound 3 (BAL-0028) and other members of this novel indazole class of neutral inhibitors will demonstrate significantly different physical, biochemical, and biological properties compared to NLRP3 inhibitors previously identified.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Sulfonamidas , Citocinas/metabolismo , Interleucina-1beta/metabolismo , Caspasa 1 , ADN
2.
Sci Adv ; 9(41): eadi1411, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37831769

RESUMEN

The nervous system plays a critical role in maintaining whole-organism homeostasis; neurons experiencing mitochondrial stress can coordinate the induction of protective cellular pathways, such as the mitochondrial unfolded protein response (UPRMT), between tissues. However, these studies largely ignored nonneuronal cells of the nervous system. Here, we found that UPRMT activation in four astrocyte-like glial cells in the nematode, Caenorhabditis elegans, can promote protein homeostasis by alleviating protein aggregation in neurons. Unexpectedly, we find that glial cells use small clear vesicles (SCVs) to signal to neurons, which then relay the signal to the periphery using dense-core vesicles (DCVs). This work underlines the importance of glia in establishing and regulating protein homeostasis within the nervous system, which can then affect neuron-mediated effects in organismal homeostasis and longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteostasis , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas/metabolismo , Caenorhabditis elegans/metabolismo , Envejecimiento , Neuroglía/metabolismo
3.
bioRxiv ; 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37609253

RESUMEN

The nervous system plays a critical role in maintaining whole-organism homeostasis; neurons experiencing mitochondrial stress can coordinate the induction of protective cellular pathways, such as the mitochondrial unfolded protein response (UPRMT), between tissues. However, these studies largely ignored non-neuronal cells of the nervous system. Here, we found that UPRMT activation in four, astrocyte-like glial cells in the nematode, C. elegans, can promote protein homeostasis by alleviating protein aggregation in neurons. Surprisingly, we find that glial cells utilize small clear vesicles (SCVs) to signal to neurons, which then relay the signal to the periphery using dense-core vesicles (DCVs). This work underlines the importance of glia in establishing and regulating protein homeostasis within the nervous system, which can then impact neuron-mediated effects in organismal homeostasis and longevity.

4.
Sci Adv ; 8(49): eabq3970, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490338

RESUMEN

Aging organisms lose the ability to induce stress responses, becoming vulnerable to protein toxicity and tissue damage. Neurons can signal to peripheral tissues to induce protective organelle-specific stress responses. Recent work shows that glia can independently induce such responses. Here, we show that overexpression of heat shock factor 1 (hsf-1) in the four astrocyte-like cephalic sheath cells of Caenorhabditis elegans induces a non-cell-autonomous cytosolic unfolded protein response, also known as the heat shock response (HSR). These animals have increased lifespan and heat stress resistance and decreased protein aggregation. Glial HSR regulation is independent of canonical thermosensory circuitry and known neurotransmitters but requires the small clear vesicle release protein UNC-13. HSF-1 and the FOXO transcription factor DAF-16 are partially required in peripheral tissues for non-cell-autonomous HSR, longevity, and thermotolerance. Cephalic sheath glial hsf-1 overexpression also leads to pathogen resistance, suggesting a role for this signaling pathway in immune function.

5.
Cell Rep ; 33(10): 108489, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33296657

RESUMEN

In multicellular organisms, neurons integrate a diverse array of external cues to affect downstream changes in organismal health. Specifically, activation of the endoplasmic reticulum (ER) unfolded protein response (UPRER) in neurons increases lifespan by preventing age-onset loss of ER proteostasis and driving lipid depletion in a cell non-autonomous manner. The mechanism of this communication is dependent on the release of small clear vesicles from neurons. We find dopaminergic neurons are necessary and sufficient for activation of cell non-autonomous UPRER to drive lipid depletion in peripheral tissues, whereas serotonergic neurons are sufficient to drive protein homeostasis in peripheral tissues. These signaling modalities are unique and independent and together coordinate the beneficial effects of neuronal cell non-autonomous ER stress signaling upon health and longevity.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Neuronas Serotoninérgicas/metabolismo , Respuesta de Proteína Desplegada/fisiología , Envejecimiento , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Neuronas Dopaminérgicas/fisiología , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Metabolismo de los Lípidos/fisiología , Longevidad , Neuronas/metabolismo , Proteostasis/fisiología , Neuronas Serotoninérgicas/fisiología , Transducción de Señal/fisiología , Respuesta de Proteína Desplegada/genética
6.
Sci Adv ; 6(26): eaaz9805, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32637599

RESUMEN

Recent work has highlighted the fact that lysosomes are a critical signaling hub of metabolic processes, providing fundamental building blocks crucial for anabolic functions. How lysosomal functions affect other cellular compartments is not fully understood. Here, we find that lysosomal recycling of the amino acids lysine and arginine is essential for proper ER quality control through the UPRER. Specifically, loss of the lysine and arginine amino acid transporter LAAT-1 results in increased sensitivity to proteotoxic stress in the ER and decreased animal physiology. We find that these LAAT-1-dependent effects are linked to glycine metabolism and transport and that the loss of function of the glycine transporter SKAT-1 also increases sensitivity to ER stress. Direct lysine and arginine supplementation, or glycine supplementation alone, can ameliorate increased ER stress sensitivity found in laat-1 mutants. These data implicate a crucial role in recycling lysine, arginine, and glycine in communication between the lysosome and ER.

7.
Science ; 367(6476): 436-440, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31974253

RESUMEN

The ability of the nervous system to sense cellular stress and coordinate protein homeostasis is essential for organismal health. Unfortunately, stress responses that mitigate disturbances in proteostasis, such as the unfolded protein response of the endoplasmic reticulum (UPRER), become defunct with age. In this work, we expressed the constitutively active UPRER transcription factor, XBP-1s, in a subset of astrocyte-like glia, which extended the life span in Caenorhabditis elegans Glial XBP-1s initiated a robust cell nonautonomous activation of the UPRER in distal cells and rendered animals more resistant to protein aggregation and chronic ER stress. Mutants deficient in neuropeptide processing and secretion suppressed glial cell nonautonomous induction of the UPRER and life-span extension. Thus, astrocyte-like glial cells play a role in regulating organismal ER stress resistance and longevity.


Asunto(s)
Caenorhabditis elegans/fisiología , Estrés del Retículo Endoplásmico/fisiología , Longevidad , Neuroglía/fisiología , Neuropéptidos/fisiología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Mutación , Agregado de Proteínas/fisiología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/fisiología
8.
Sci Adv ; 6(1): eaaz1441, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31911951

RESUMEN

Longevity is dictated by a combination of environmental and genetic factors. One of the key mechanisms to regulate life-span extension is the induction of protein chaperones for protein homeostasis. Ectopic activation of the unfolded protein response of the endoplasmic reticulum (UPRER) specifically in neurons is sufficient to enhance organismal stress resistance and extend life span. Here, we find that this activation not only promotes chaperones but also facilitates ER restructuring and ER function. This restructuring is concomitant with lipid depletion through lipophagy. Activation of lipophagy is distinct from chaperone induction and is required for the life-span extension found in this paradigm. Last, we find that overexpression of the lipophagy component, ehbp-1, is sufficient to deplete lipids, remodel ER, and promote life span. Therefore, UPR induction in neurons triggers two distinct programs in the periphery: the proteostasis arm through protein chaperones and metabolic changes through lipid depletion mediated by EH domain binding protein 1 (EHBP-1).


Asunto(s)
Autofagia/genética , Proteínas de Caenorhabditis elegans/genética , Longevidad/genética , Respuesta de Proteína Desplegada/genética , Proteínas de Transporte Vesicular/genética , Animales , Caenorhabditis elegans , Retículo Endoplásmico/genética , Estrés del Retículo Endoplásmico/genética , Humanos , Lípidos/genética , Chaperonas Moleculares/genética , Neuronas/metabolismo , Transducción de Señal/genética
9.
Mol Biol Cell ; 29(21): 2522-2527, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30133343

RESUMEN

There are many studies suggesting an age-associated decline in the actin cytoskeleton, and this has been adopted as common knowledge in the field of aging biology. However, a direct identification of this phenomenon in aging multicellular organisms has not been performed. Here, we express LifeAct::mRuby in a tissue-specific manner to interrogate cytoskeletal organization as a function of age. We show for the first time in Caenorhabditis elegans that the organization and morphology of the actin cytoskeleton deteriorate at advanced age in the muscles, intestine, and hypodermis. Moreover, hsf-1 is essential for regulating cytoskeletal integrity during aging, so that knockdown of hsf-1 results in premature aging of actin and its overexpression protects actin cytoskeletal integrity in the muscles, the intestine, and the hypodermis. Finally, hsf-1 overexpression in neurons alone is sufficient to protect cytoskeletal integrity in nonneuronal cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Envejecimiento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Factores de Transcripción/metabolismo , Actinas/metabolismo , Animales , Homeostasis , Longevidad , Neuronas/metabolismo , Especificidad de Órganos
10.
Dev Cell ; 44(2): 139-163, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29401418

RESUMEN

There exists a phenomenon in aging research whereby early life stress can have positive impacts on longevity. The mechanisms underlying these observations suggest a robust, long-lasting induction of cellular defense mechanisms. These include the various unfolded protein responses of the endoplasmic reticulum (ER), cytosol, and mitochondria. Indeed, ectopic induction of these pathways, in the absence of stress, is sufficient to increase lifespan in organisms as diverse as yeast, worms, and flies. Here, we provide an overview of the protein quality control mechanisms that operate in the cytosol, mitochondria, and ER and discuss how they affect cellular health and viability during stress and aging.


Asunto(s)
Envejecimiento/fisiología , Estrés Fisiológico/fisiología , Respuesta de Proteína Desplegada , Animales , Autofagia , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Homeostasis , Mitocondrias/metabolismo
11.
Cell ; 165(5): 1209-1223, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27133168

RESUMEN

Across eukaryotic species, mild mitochondrial stress can have beneficial effects on the lifespan of organisms. Mitochondrial dysfunction activates an unfolded protein response (UPR(mt)), a stress signaling mechanism designed to ensure mitochondrial homeostasis. Perturbation of mitochondria during larval development in C. elegans not only delays aging but also maintains UPR(mt) signaling, suggesting an epigenetic mechanism that modulates both longevity and mitochondrial proteostasis throughout life. We identify the conserved histone lysine demethylases jmjd-1.2/PHF8 and jmjd-3.1/JMJD3 as positive regulators of lifespan in response to mitochondrial dysfunction across species. Reduction of function of the demethylases potently suppresses longevity and UPR(mt) induction, while gain of function is sufficient to extend lifespan in a UPR(mt)-dependent manner. A systems genetics approach in the BXD mouse reference population further indicates conserved roles of the mammalian orthologs in longevity and UPR(mt) signaling. These findings illustrate an evolutionary conserved epigenetic mechanism that determines the rate of aging downstream of mitochondrial perturbations.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Histona Demetilasas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Animales , Caenorhabditis elegans/genética , Longevidad , Ratones , Mitocondrias/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...