Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Stress ; 15: 100338, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34095364

RESUMEN

The precise mechanisms underlying the detrimental effects of early life adversity (ELA) on adult mental health remain still elusive. To date, most studies have exclusively targeted neuronal populations and not considered neuron-glia crosstalk as a crucially important element for the integrity of stress-related brain function. Here, we have investigated the impact of ELA, in the form of a limited bedding and nesting material (LBN) paradigm, on a glial subpopulation with unique properties in brain homeostasis, the NG2+ cells. First, we have established a link between maternal behavior, activation of the offspring's stress response and heterogeneity in the outcome to LBN manipulation. We further showed that LBN targets the hippocampal NG2+ transcriptome with glucocorticoids being an important mediator of the LBN-induced molecular changes. LBN altered the NG2+ transcriptome and these transcriptional effects were correlated with glucocorticoids levels. The functional relevance of one LBN-induced candidate gene, Scn7a, could be confirmed by an increase in the density of voltage-gated sodium (Nav) channel activated currents in hippocampal NG2+ cells. Scn7a remained upregulated until adulthood in LBN animals, which displayed impaired cognitive performance. Considering that Nav channels are important for NG2+ cell-to-neuron communication, our findings provide novel insights into the disruption of this process in LBN mice.

2.
Neurochem Res ; 45(3): 566-579, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30843138

RESUMEN

The formation of myelin around axons by oligodendrocytes (OL) poses an enormous synthetic and energy challenge for the glial cell. Local translation of transcripts, including the mRNA for the essential myelin protein Myelin Basic Protein (MBP) at the site of myelin deposition has been recognised as an efficient mechanism to assure proper myelin sheath assembly. Oligodendroglial precursor cells (OPCs) form synapses with neurons and may localise many additional mRNAs in a similar fashion to synapses between neurons. In some diseases in which demyelination occurs, an abundance of OPCs is present but there is a failure to efficiently remyelinate and to synthesise MBP. This compromises axonal survival and function. OPCs are especially sensitive to cellular stress as occurring in neurodegenerative diseases, which can impinge on their ability to translate mRNAs into protein. Stress causes the build up of cytoplasmic stress granules (SG) in which many RNAs are sequestered and translationally stalled until the stress ceases. Chronic stress in particular could convert this initially protective reaction of the cell into damage, as persistence of SG may lead to pathological aggregate formation or long-term translation block of SG-associated RNAs. The recent recognition that many neurodegenerative diseases often exhibit an early white matter pathology with a proliferation of surviving OPCs, renders a study of the stress-associated processes in oligodendrocytes and OPCs especially relevant. Here, we discuss a potential dysfunction of RNA regulation in myelin diseases such as Multiple Sclerosis (MS) and Vanishing white matter disease (VWM) and potential contributions of OL dysfunction to neurodegenerative diseases such as Amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Fragile X syndrome (FXS).


Asunto(s)
Enfermedades Neurodegenerativas/etiología , Neuroglía/patología , Oligodendroglía/patología , ARN/genética , Animales , Diferenciación Celular , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuroglía/metabolismo , Oligodendroglía/metabolismo
3.
Neuron ; 101(3): 356-357, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30731055

RESUMEN

In this issue of Neuron, Spitzer et al. (2019) demonstrate age- and region-dependent diversity in the expression of voltage-gated ion channels and neurotransmitter receptors in oligodendrocyte progenitors. These define their interactions with neurons and thus suggest an increasing functional heterogeneity with age and between brain regions.


Asunto(s)
Células Precursoras de Oligodendrocitos , Linaje de la Célula , Neuronas , Oligodendroglía
4.
Front Cell Neurosci ; 12: 231, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30131676

RESUMEN

The NG2 proteoglycan is expressed by oligodendrocyte precursor cells (OPCs) and is abundantly expressed by tumors such as melanoma and glioblastoma. Functions of NG2 include an influence on proliferation, migration and neuromodulation. Similar to other type-1 membrane proteins, NG2 undergoes proteolysis, generating a large ectodomain, a C-terminal fragment (CTF) and an intracellular domain (ICD) via sequential action of α- and γ-secretases which is enhanced by neuronal activity. Functional roles of NG2 have so far been shown for the full-length protein, the released ectodomain and CTF, but not for the ICD. In this study, we characterized the role of the NG2 ICD in OPC and Human Embryonic Kidney (HEK) cells. Overexpressed ICD is predominantly localized in the cell cytosol, including the distal processes of OPCs. Nuclear localisation of a fraction of the ICD is dependent on Nuclear Localisation Signals. Immunoprecipitation and Mass Spectrometry followed by functional analysis indicated that the NG2 ICD modulates mRNA translation and cell-cycle kinetics. In OPCs and HEK cells, ICD overexpression results in an mTORC1-dependent upregulation of translation, as well as a shift of the cell population toward S-phase. NG2 ICD increases the active (phosphorylated) form of mTOR and modulates downstream signaling cascades, including increased phosphorylation of p70S6K1 and increased expression of eEF2. Strikingly, levels of FMRP, an RNA-binding protein that is regulated by mTOR/p70S6K1/eEF2 were decreased. In neurons, FMRP acts as a translational repressor under activity-dependent control and is mutated in Fragile X Syndrome (FXS). Knock-down of endogenous NG2 in primary OPC reduced translation and mTOR/p70S6K1 phosphorylation in Oli-neu. Here, we identify the NG2 ICD as a regulator of translation in OPCs via modulation of the well-established mTORC1 pathway. We show that FXS-related FMRP signaling is not exclusive to neurons but plays a role in OPCs. This provides a signal cascade in OPC which can be influenced by the neuronal network, since the NG2 ICD has been shown to be generated by constitutive as well as activity-dependent cleavage. Our results also elucidate a possible role of NG2 in tumors exhibiting enhanced rates of translation and rapid cell cycle kinetics.

5.
J Cell Sci ; 131(9)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29622601

RESUMEN

In the central nervous system, oligodendroglial expression of myelin basic protein (MBP) is crucial for the assembly and structure of the myelin sheath. MBP synthesis is tightly regulated in space and time, particularly at the post-transcriptional level. We have identified the DEAD-box RNA helicase DDX5 (also known as p68) in a complex with Mbp mRNA in oligodendroglial cells. Expression of DDX5 is highest in progenitor cells and immature oligodendrocytes, where it localizes to heterogeneous populations of cytoplasmic ribonucleoprotein (RNP) complexes associated with Mbp mRNA in the cell body and processes. Manipulation of the amount of DDX5 protein inversely affects the level of MBP. We present evidence that DDX5 is involved in post-transcriptional regulation of MBP protein synthesis, with implications for oligodendroglial development. In addition, knockdown of DDX5 results in an increased abundance of MBP isoforms containing exon 2 in immature oligodendrocytes, most likely by regulating alternative splicing of Mbp Our findings contribute to the understanding of the complex nature of MBP post-transcriptional control in immature oligodendrocytes where DDX5 appears to affect the abundance of MBP proteins via distinct but converging mechanisms.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteína Básica de Mielina/metabolismo , Oligodendroglía/metabolismo , Animales , Citoplasma/metabolismo , ARN Helicasas DEAD-box/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Proteína Básica de Mielina/biosíntesis , Proteína Básica de Mielina/genética , Procesamiento Postranscripcional del ARN
8.
Glia ; 64(4): 507-23, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26638112

RESUMEN

Traumatic brain injury (TBI) is a major cause of death and disability. The underlying pathophysiology is characterized by secondary processes including neuronal death and gliosis. To elucidate the role of the NG2 proteoglycan we investigated the response of NG2-knockout mice (NG2-KO) to TBI. Seven days after TBI behavioral analysis, brain damage volumetry and assessment of blood brain barrier integrity demonstrated an exacerbated response of NG2-KO compared to wild-type (WT) mice. Reactive astrocytes and expression of the reactive astrocyte and neurotoxicity marker Lcn2 (Lipocalin-2) were increased in the perilesional brain tissue of NG2-KO mice. In addition, microglia/macrophages with activated morphology were increased in number and mRNA expression of the M2 marker Arg1 (Arginase 1) was enhanced in NG2-KO mice. While TBI-induced expression of pro-inflammatory cytokine genes was unchanged between genotypes, PCR array screening revealed a marked TBI-induced up-regulation of the C-X-C motif chemokine 13 gene Cxcl13 in NG2-KO mice. CXCL13, known to attract immune cells to the inflamed brain, was expressed by activated perilesional microglia/macrophages seven days after TBI. Thirty days after TBI, NG2-KO mice still exhibited more pronounced neurological deficits than WT mice, up-regulation of Cxcl13, enhanced CD45+ leukocyte infiltration and a relative increase of activated Iba-1+/CD45+ microglia/macrophages. Our study demonstrates that lack of NG2 exacerbates the neurological outcome after TBI and associates with abnormal activation of astrocytes, microglia/macrophages and increased leukocyte recruitment to the injured brain. These findings suggest that NG2 may counteract neurological deficits and adverse glial responses in TBI.


Asunto(s)
Antígenos/metabolismo , Lesiones Encefálicas/metabolismo , Encéfalo/metabolismo , Neuroglía/metabolismo , Proteoglicanos/metabolismo , Animales , Antígenos/genética , Arginasa/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/patología , Lesiones Encefálicas/patología , Proteínas de Unión al Calcio/metabolismo , Permeabilidad Capilar/fisiología , Recuento de Células , Células Cultivadas , Quimiocina CXCL13/metabolismo , Estudios de Cohortes , Modelos Animales de Enfermedad , Gliosis/metabolismo , Gliosis/patología , Antígenos Comunes de Leucocito/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Neuroglía/patología , Proteoglicanos/genética , ARN Mensajero/metabolismo , Índice de Severidad de la Enfermedad
9.
Cereb Cortex ; 26(1): 51-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25100858

RESUMEN

NG2 glial cells (as from now NG2 cells) are unique in receiving synaptic input from neurons. However, the components regulating formation and maintenance of these neuron-glia synapses remain elusive. The transmembrane protein NG2 has been considered a potential mediator of synapse formation and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering, because it contains 2 extracellular Laminin G/Neurexin/Sex Hormone-Binding Globulin domains, which in neurons are crucial for formation of transsynaptic neuroligin-neurexin complexes. NG2 is connected via Glutamate Receptor-Interacting Protein with GluA2/3-containing AMPARs, thereby possibly mediating receptor clustering in glial postsynaptic density. To elucidate the role of NG2 in neuron-glia communication, we investigated glutamatergic synaptic transmission in juvenile and aged hippocampal NG2 cells of heterozygous and homozygous NG2 knockout mice. Neuron-NG2 cell synapses readily formed in the absence of NG2. Short-term plasticity, synaptic connectivity, postsynaptic AMPAR current kinetics, and density were not affected by NG2 deletion. During development, an NG2-independent acceleration of AMPAR current kinetics and decreased synaptic connectivity were observed. Our results indicate that the lack of NG2 does not interfere with genesis and basic properties of neuron-glia synapses. In addition, we demonstrate frequent expression of neuroligins 1-3 in juvenile and aged NG2 cells, suggesting a role of these molecules in synapse formation between NG2 glia and neurons.


Asunto(s)
Antígenos/genética , Hipocampo/citología , Neuroglía/citología , Neuronas/citología , Proteoglicanos/genética , Sinapsis/metabolismo , Transmisión Sináptica/genética , Animales , Ácido Glutámico/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Transgénicos , Receptores AMPA/metabolismo
10.
Brain Res ; 1638(Pt B): 161-166, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26100334

RESUMEN

In the normal mammalian CNS, the NG2 proteoglycan is expressed by oligodendrocyte precursor cells (OPC) but not by any other neural cell-type. NG2 is a type-1 membrane protein, exerting multiple roles in the CNS including intracellular signaling within the OPC, with effects on migration, cytoskeleton interaction and target gene regulation. It has been recently shown that the extracellular region of NG2, in addition to an adhesive function, acts as a soluble ECM component with the capacity to alter defined neuronal network properties. This region of NG2 is thus endowed with neuromodulatory properties. In order to generate biologically active fragments yielding these properties, the sequential cleavage of the NG2 protein by α- and γ-secretases occurs. The basal level of constitutive cleavage is stimulated by neuronal network activity. This processing leads to 4 major NG2 fragments which all have been associated with distinct biological functions. Here we summarize these functions, focusing on recent discoveries and their implications for the CNS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).


Asunto(s)
Antígenos/metabolismo , Sistema Nervioso Central/metabolismo , Oligodendroglía/metabolismo , Proteoglicanos/metabolismo , Células Madre/metabolismo , Animales , Humanos
11.
PLoS One ; 10(9): e0137311, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26340347

RESUMEN

The NG2 proteoglycan is characteristically expressed by oligodendrocyte progenitor cells (OPC) and also by aggressive brain tumours highly resistant to chemo- and radiation therapy. Oligodendrocyte-lineage cells are particularly sensitive to stress resulting in cell death in white matter after hypoxic or ischemic insults of premature infants and destruction of OPC in some types of Multiple Sclerosis lesions. Here we show that the NG2 proteoglycan binds OMI/HtrA2, a mitochondrial serine protease which is released from damaged mitochondria into the cytosol in response to stress. In the cytosol, OMI/HtrA2 initiates apoptosis by proteolytic degradation of anti-apoptotic factors. OPC in which NG2 has been downregulated by siRNA, or OPC from the NG2-knockout mouse show an increased sensitivity to oxidative stress evidenced by increased cell death. The proapoptotic protease activity of OMI/HtrA2 in the cytosol can be reduced by the interaction with NG2. Human glioma expressing high levels of NG2 are less sensitive to oxidative stress than those with lower NG2 expression and reducing NG2 expression by siRNA increases cell death in response to oxidative stress. Binding of NG2 to OMI/HtrA2 may thus help protect cells against oxidative stress-induced cell death. This interaction is likely to contribute to the high chemo- and radioresistance of glioma.


Asunto(s)
Antígenos/metabolismo , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Proteínas Mitocondriales/metabolismo , Proteoglicanos/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Antígenos/genética , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebelo/patología , Citosol/efectos de los fármacos , Citosol/metabolismo , Glioblastoma/genética , Glioblastoma/patología , Serina Peptidasa A2 que Requiere Temperaturas Altas , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Estrés Oxidativo , Cultivo Primario de Células , Unión Proteica , Proteoglicanos/antagonistas & inhibidores , Proteoglicanos/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Serina Endopeptidasas/genética , Transducción de Señal
12.
PLoS One ; 10(5): e0127222, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25966014

RESUMEN

NG2 protein-expressing oligodendrocyte progenitor cells (OPC) are a persisting and major glial cell population in the adult mammalian brain. Direct synaptic innervation of OPC by neurons throughout the brain together with their ability to sense neuronal network activity raises the question of additional physiological roles of OPC, supplementary to generating myelinating oligodendrocytes. In this study we investigated whether OPC express neuromodulatory factors, typically synthesized by other CNS cell types. Our results show that OPC express two well-characterized neuromodulatory proteins: Prostaglandin D2 synthase (PTGDS) and neuronal Pentraxin 2 (Nptx2/Narp). Expression levels of the enzyme PTGDS are influenced in cultured OPC by the NG2 intracellular region which can be released by cleavage and localizes to glial nuclei upon transfection. Furthermore PTGDS mRNA levels are reduced in OPC from NG2-KO mouse brain compared to WT cells after isolation by cell sorting and direct analysis. These results show that OPC can contribute to the expression of these proteins within the CNS and suggest PTGDS expression as a downstream target of NG2 signaling.


Asunto(s)
Células Madre Adultas/fisiología , Proteína C-Reactiva/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Oligodendroglía/citología , Animales , Antígenos/genética , Antígenos/metabolismo , Diferenciación Celular , Línea Celular , Células HEK293 , Humanos , Oxidorreductasas Intramoleculares/genética , Lipocalinas/genética , Ratones , Ratones Noqueados , Oligodendroglía/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo
13.
PLoS Biol ; 12(11): e1001993, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25387269

RESUMEN

The role of glia in modulating neuronal network activity is an important question. Oligodendrocyte precursor cells (OPC) characteristically express the transmembrane proteoglycan nerve-glia antigen 2 (NG2) and are unique glial cells receiving synaptic input from neurons. The development of NG2+ OPC into myelinating oligodendrocytes has been well studied, yet the retention of a large population of synapse-bearing OPC in the adult brain poses the question as to additional functional roles of OPC in the neuronal network. Here we report that activity-dependent processing of NG2 by OPC-expressed secretases functionally regulates the neuronal network. NG2 cleavage by the α-secretase ADAM10 yields an ectodomain present in the extracellular matrix and a C-terminal fragment that is subsequently further processed by the γ-secretase to release an intracellular domain. ADAM10-dependent NG2 ectodomain cleavage and release (shedding) in acute brain slices or isolated OPC is increased by distinct activity-increasing stimuli. Lack of NG2 expression in OPC (NG2-knockout mice), or pharmacological inhibition of NG2 ectodomain shedding in wild-type OPC, results in a striking reduction of N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) in pyramidal neurons of the somatosensory cortex and alterations in the subunit composition of their α-amino-3-hydroxy-5-methyl-4-isoxazolepr opionicacid (AMPA) receptors. In NG2-knockout mice these neurons exhibit diminished AMPA and NMDA receptor-dependent current amplitudes; strikingly AMPA receptor currents can be rescued by application of conserved LNS protein domains of the NG2 ectodomain. Furthermore, NG2-knockout mice exhibit altered behavior in tests measuring sensorimotor function. These results demonstrate for the first time a bidirectional cross-talk between OPC and the surrounding neuronal network and demonstrate a novel physiological role for OPC in regulating information processing at neuronal synapses.


Asunto(s)
Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Antígenos/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Oligodendroglía/fisiología , Proteoglicanos/metabolismo , Proteína ADAM10 , Animales , Línea Celular , Matriz Extracelular/metabolismo , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Noqueados , Plasticidad Neuronal , Estructura Terciaria de Proteína , Células Piramidales/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Filtrado Sensorial , Sinapsis/metabolismo
14.
Philos Trans R Soc Lond B Biol Sci ; 369(1652)2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25135971

RESUMEN

Exosomes are small membranous vesicles of endocytic origin that are released by almost every cell type. They exert versatile functions in intercellular communication important for many physiological and pathological processes. Recently, exosomes attracted interest with regard to their role in cell-cell communication in the nervous system. We have shown that exosomes released from oligodendrocytes upon stimulation with the neurotransmitter glutamate are internalized by neurons and enhance the neuronal stress tolerance. Here, we demonstrate that oligodendroglial exosomes also promote neuronal survival during oxygen-glucose deprivation, a model of cerebral ischaemia. We show the transfer from oligodendrocytes to neurons of superoxide dismutase and catalase, enzymes which are known to help cells to resist oxidative stress. Additionally, we identify various effects of oligodendroglial exosomes on neuronal physiology. Electrophysiological analysis using in vitro multi-electrode arrays revealed an increased firing rate of neurons exposed to oligodendroglial exosomes. Moreover, gene expression analysis and phosphorylation arrays uncovered differentially expressed genes and altered signal transduction pathways in neurons after exosome treatment. Our study thus provides new insight into the broad spectrum of action of oligodendroglial exosomes and their effects on neuronal physiology. The exchange of extracellular vesicles between neural cells may exhibit remarkable potential to impact brain performance.


Asunto(s)
Comunicación Celular/fisiología , Exosomas/metabolismo , Regulación de la Expresión Génica/fisiología , Neuronas/fisiología , Oligodendroglía/fisiología , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Animales , Western Blotting , Catalasa/metabolismo , Hipoxia de la Célula/fisiología , Células Cultivadas , Glucosa/deficiencia , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Oligodendroglía/metabolismo , Fosforilación , Reacción en Cadena en Tiempo Real de la Polimerasa , Superóxido Dismutasa/metabolismo
15.
Glia ; 62(6): 896-913, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24578301

RESUMEN

NG2 (nerve/glia antigen-2) is a type I transmembrane glycoprotein and also known as chondroitin sulfate proteoglycan 4. In the parenchyma of the central nervous system, NG2-expressing (NG2(+) ) cells have been identified as a novel type of glia with a strong potential to generate oligodendrocytes (OLs) in the developing white matter. However, the differentiation potential of NG2 glia remained controversial, largely attributable to shortcomings of transgenic mouse models used for fate mapping. To minimize these restrictions and to more faithfully mimic the endogenous NG2 expression in vivo, we generated a mouse line in which the open reading frame of the tamoxifen-inducible form of the Cre DNA recombinase (CreERT2) was inserted into the NG2 locus by homologous recombination. Results from this novel mouse line demonstrate that at different developmental stages of the brain, NG2(+) cells either stayed as NG2 glia or differentiated into OLs during the whole life span. Interestingly, when Cre activity was induced at embryonic stages, a significant number of reporter(+) astrocytes could be detected in the gray matter after birth. However, in other brain regions, such as olfactory bulb, brain stem, and cerebellum, all of the NG2 glia was restricted to the OL lineage. In addition, tamoxifen-sensitive and NG2 gene locus-dependent gene recombination could be detected in a small, but persistent population of cortical NeuN(+) neurons starting from the second postnatal week.


Asunto(s)
Antígenos/biosíntesis , Antígenos/genética , Diferenciación Celular/fisiología , Integrasas/biosíntesis , Integrasas/genética , Neuroglía/fisiología , Proteoglicanos/biosíntesis , Proteoglicanos/genética , Animales , Femenino , Técnicas de Sustitución del Gen , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligodendroglía/fisiología , Embarazo
16.
PLoS One ; 9(2): e89423, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586768

RESUMEN

Oligodendrocytes are the myelinating glial cells of the central nervous system. In the course of brain development, oligodendrocyte precursor cells migrate, scan the environment and differentiate into mature oligodendrocytes with multiple cellular processes which recognize and ensheath neuronal axons. During differentiation, oligodendrocytes undergo dramatic morphological changes requiring cytoskeletal rearrangements which need to be tightly regulated. The non-receptor tyrosine kinase Fyn plays a central role in oligodendrocyte differentiation and myelination. In order to improve our understanding of the role of oligodendroglial Fyn kinase, we have identified Fyn targets in these cells. Purification and mass-spectrometric analysis of tyrosine-phosphorylated proteins in response to overexpressed active Fyn in the oligodendrocyte precursor cell line Oli-neu, yielded the adaptor molecule p130Cas. We analyzed the function of this Fyn target in oligodendroglial cells and observed that reduction of p130Cas levels by siRNA affects process outgrowth, the thickness of cellular processes and migration behavior of Oli-neu cells. Furthermore, long term p130Cas reduction results in decreased cell numbers as a result of increased apoptosis in cultured primary oligodendrocytes. Our data contribute to understanding the molecular events taking place during oligodendrocyte migration and morphological differentiation and have implications for myelin formation.


Asunto(s)
Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Proteína Sustrato Asociada a CrK/metabolismo , Oligodendroglía/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Animales , Axones/metabolismo , Células Cultivadas , Ratones , Oligodendroglía/citología , Fosforilación
17.
PLoS Biol ; 11(7): e1001604, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23874151

RESUMEN

Reciprocal interactions between neurons and oligodendrocytes are not only crucial for myelination, but also for long-term survival of axons. Degeneration of axons occurs in several human myelin diseases, however the molecular mechanisms of axon-glia communication maintaining axon integrity are poorly understood. Here, we describe the signal-mediated transfer of exosomes from oligodendrocytes to neurons. These endosome-derived vesicles are secreted by oligodendrocytes and carry specific protein and RNA cargo. We show that activity-dependent release of the neurotransmitter glutamate triggers oligodendroglial exosome secretion mediated by Ca²âº entry through oligodendroglial NMDA and AMPA receptors. In turn, neurons internalize the released exosomes by endocytosis. Injection of oligodendroglia-derived exosomes into the mouse brain results in functional retrieval of exosome cargo in neurons. Supply of cultured neurons with oligodendroglial exosomes improves neuronal viability under conditions of cell stress. These findings indicate that oligodendroglial exosomes participate in a novel mode of bidirectional neuron-glia communication contributing to neuronal integrity.


Asunto(s)
Exosomas/efectos de los fármacos , Neuronas/citología , Neurotransmisores/farmacología , Oligodendroglía/citología , Animales , Comunicación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Ácido Glutámico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
18.
J Neurosci ; 33(26): 10858-74, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23804106

RESUMEN

The transmembrane proteoglycan NG2 is expressed by oligodendrocyte precursor cells (OPC), which migrate to axons during developmental myelination and remyelinate in the adult after migration to injured sites. Highly invasive glial tumors also express NG2. Despite the fact that NG2 has been implicated in control of OPC migration, its mode of action remains unknown. Here, we show in vitro and in vivo that NG2 controls migration of OPC through the regulation of cell polarity. In stab wounds in adult mice we show that NG2 controls orientation of OPC toward the wound. NG2 stimulates RhoA activity at the cell periphery via the MUPP1/Syx1 signaling pathway, which favors the bipolar shape of migrating OPC and thus directional migration. Upon phosphorylation of Thr-2256, downstream signaling of NG2 switches from RhoA to Rac stimulation. This triggers process outgrowth through regulators of front-rear polarity and we show using a phospho-mimetic form of NG2 that indeed NG2 recruits proteins of the CRB and the PAR polarity complexes to stimulate Rac activity via the GEF Tiam1. Our findings demonstrate that NG2 is a core organizer of Rho GTPase activity and localization in the cell, which controls OPC polarity and directional migration. This work also reveals CRB and PAR polarity complexes as new effectors of NG2 signaling in the establishment of front-rear polarity.


Asunto(s)
Antígenos/fisiología , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Proteínas del Tejido Nervioso/fisiología , Oligodendroglía/fisiología , Proteoglicanos/fisiología , Proteínas de Unión al GTP rho/fisiología , Antígenos/genética , Movimiento Celular/genética , Forma de la Célula/genética , Forma de la Célula/fisiología , Quimiotaxis/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/fisiología , Humanos , Fosforilación , Proteoglicanos/genética , ARN/biosíntesis , ARN/genética , Interferencia de ARN , Transducción de Señal/genética , Transducción de Señal/fisiología , Células Madre , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Treonina/metabolismo , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/fisiología , Proteínas de Unión al GTP rac/metabolismo
19.
FASEB J ; 26(11): 4576-83, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22859373

RESUMEN

Gene inactivation reporters are powerful tools to circumvent limitations of the widely used Cre/loxP system of conditional mutagenesis. With new conditional transgenic mouse lines expressing the enhanced cyan fluorescent protein (ECFP) instead of connexin43 (Cx43) after Cre-mediated recombination, we demonstrate dual reporter approaches to simultaneously examine astrocyte subpopulations expressing different connexins, identify compensatory up-regulation within gene families, and quantify Cre-mediated deletion at the allelic level. Analysis of a newly generated Cx43 knock-in ECFP mouse revealed an unexpected heterogeneity of Cx43-expressing astrocytes across brain areas.


Asunto(s)
Astrocitos/metabolismo , Conexina 43/genética , Conexinas/genética , Regulación de la Expresión Génica/fisiología , Genes Reporteros , Integrasas/metabolismo , Animales , Astrocitos/citología , Encéfalo/metabolismo , Conexina 30 , Conexina 43/metabolismo , Conexinas/metabolismo , Eliminación de Gen , Proteína Ácida Fibrilar de la Glía , Proteínas Fluorescentes Verdes , Integrasas/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
20.
J Biol Chem ; 287(3): 1742-54, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22128153

RESUMEN

Myelin basic protein (MBP) is a major component of central nervous system (CNS) myelin. The absence of MBP results in the loss of almost all compact myelin in the CNS. MBP mRNA is sorted into RNA granules that are transported to the periphery of oligodendrocytes in a translationally inactive state. A central mediator of this transport process is the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 that binds to the cis-acting A2-response element in the 3'UTR of MBP mRNA. Recently, we found that activation of the Src family nonreceptor tyrosine kinase Fyn in oligodendrocytes leads to phosphorylation of hnRNP A2 and to increased translation of MBP mRNA. Here, we identify the RNA-binding protein hnRNP F as a novel component of MBP mRNA transport granules. It is associated with hnRNP A2 and MBP mRNA in cytoplasmic granular structures and is involved in post-transcriptional regulation of MBP expression. Fyn kinase activity results in phosphorylation of hnRNP F in the cytoplasm and its release from MBP mRNA and RNA granules. Our results define hnRNP F as a regulatory element of MBP expression in oligodendrocytes and imply an important function of hnRNP F in the control of myelin synthesis.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Regulación de la Expresión Génica/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Proteína Básica de Mielina/biosíntesis , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Regiones no Traducidas 3'/fisiología , Animales , Transporte Biológico/fisiología , Células Cultivadas , Gránulos Citoplasmáticos/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Humanos , Ratones , Proteína Básica de Mielina/genética , Oligodendroglía/citología , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...