Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
bioRxiv ; 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37090508

RESUMEN

Astrocytes exert multifarious roles in the formation, regulation, and function of synapses in the brain, but the mechanisms involved remain unclear. Interestingly, astrocytes abundantly express neuroligins, postsynaptic adhesion molecules that bind to presynaptic neurexins. A pioneering recent study reported that loss-of-function of neuroligins in astrocytes impairs excitatory synapse formation and astrocyte morphogenesis. This study suggested a crucial synaptic function for astrocytic neuroligins but was puzzling given that constitutive neuroligin deletions do not decrease excitatory synapse numbers. Thus, we here examined the function of astrocytic neuroligins using a rigorous conditional genetic approach with deletion of all major neuroligins (Nlgn1-3) in astrocytes. Our results show that early postnatal deletion of neuroligins from astrocytes has no effect on cortical or hippocampal synapses and does not alter the cytoarchitecture of astrocytes. Thus, astrocytic neuroligins are unlikely to shape synapse formation or astrocyte development but may perform other important functions in astrocytes.

3.
Nat Commun ; 14(1): 1771, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997523

RESUMEN

Disrupted synaptic inhibition is implicated in neuropsychiatric disorders, yet the molecular mechanisms that shape and sustain inhibitory synapses are poorly understood. Here, we show through rescue experiments performed using Neurexin-3 conditional knockout mice that alternative splicing at SS2 and SS4 regulates the release probability, but not the number, of inhibitory synapses in the olfactory bulb and prefrontal cortex independent of sex. Neurexin-3 splice variants that mediate Neurexin-3 binding to dystroglycan enable inhibitory synapse function, whereas splice variants that don't allow dystroglycan binding do not. Furthermore, a minimal Neurexin-3 protein that binds to dystroglycan fully sustains inhibitory synaptic function, indicating that trans-synaptic dystroglycan binding is necessary and sufficient for Neurexin-3 function in inhibitory synaptic transmission. Thus, Neurexin-3 enables a normal release probability at inhibitory synapses via a trans-synaptic feedback signaling loop consisting of presynaptic Neurexin-3 and postsynaptic dystroglycan.


Asunto(s)
Empalme Alternativo , Distroglicanos , Animales , Ratones , Empalme Alternativo/genética , Moléculas de Adhesión Celular/metabolismo , Distroglicanos/genética , Distroglicanos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica
4.
Proc Natl Acad Sci U S A ; 120(13): e2300363120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36961922

RESUMEN

α- and ß-neurexins are extensively alternatively spliced, presynaptic cell-adhesion molecules that are thought to organize synapse assembly. However, recent data revealed that, in the hippocampus in vivo, the deletion of one neurexin isoform, Nrxn2, surprisingly increased excitatory synapse numbers and enhanced their presynaptic release probability, suggesting that Nrxn2 restricts, instead of enabling, synapse assembly. To delineate the synaptic function and mechanism of action of Nrxn2, we examined cultured hippocampal neurons as a reduced system. In heterologous synapse formation assays, different alternatively spliced Nrxn2ß isoforms robustly promoted synapse assembly similar to Nrxn1ß and Nrxn3ß, consistent with a general synaptogenic function of neurexins. Deletion of Nrxn2 from cultured hippocampal neurons, however, caused a significant increase in synapse density and release probability, replicating the in vivo data that suggested a synapse-restricting function. Rescue experiments revealed that two of the four Nrxn2ß splice variants (Nrxn2ß-SS4+/SS5- and Nrxn2ß-SS4+/SS5+) reversed the increase in synapse density in Nrxn2-deficient neurons, whereas only one of the four Nrxn2ß splice variants (Nrxn2ß-SS4+/SS5+) normalized the increase in release probability in Nrxn2-deficient neurons. Thus, a subset of Nrxn2 splice variants restricts synapse numbers and restrains their release probability in cultured neurons.


Asunto(s)
Empalme Alternativo , Sinapsis , Sinapsis/metabolismo , Hipocampo/metabolismo , Moléculas de Adhesión Celular/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo
5.
Exp Neurobiol ; 32(1): 42-55, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36919335

RESUMEN

Amyloid precursor protein (APP) plays an important role in the pathogenesis of Alzheimer's disease (AD), but the normal function of APP at synapses is poorly understood. We and others have found that APP interacts with Reelin and that each protein is individually important for dendritic spine formation, which is associated with learning and memory, in vitro. However, whether Reelin acts through APP to modulate dendritic spine formation or synaptic function remains unknown. In the present study, we found that Reelin treatment significantly increased dendritic spine density and PSD-95 puncta number in primary hippocampal neurons. An examination of the molecular mechanisms by which Reelin regulates dendritic spinogenesis revealed that Reelin enhanced hippocampal dendritic spine formation in a Ras/ERK/CREB signaling-dependent manner. Interestingly, Reelin did not increase dendritic spine number in primary hippocampal neurons when APP expression was reduced or in vivo in APP knockout (KO) mice. Taken together, our data are the first to demonstrate that Reelin acts cooperatively with APP to modulate dendritic spine formation and suggest that normal APP function is critical for Reelin-mediated dendritic spinogenesis at synapses.

6.
Sci Adv ; 9(1): eadd8856, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608123

RESUMEN

Neurexins are widely thought to promote synapse formation and to organize synapse properties. Here we found that in contrast to neurexin-1 and neurexin-3, neurexin-2 unexpectedly restricts synapse formation. In the hippocampus, constitutive or neuron-specific deletions of neurexin-2 nearly doubled the strength of excitatory CA3➔CA1 region synaptic connections and markedly increased their release probability. No effect on inhibitory synapses was detected. Stochastic optical reconstruction microscopy (STORM) superresolution microscopy revealed that the neuron-specific neurexin-2 deletion elevated the density of excitatory CA1 region synapses nearly twofold. Moreover, hippocampal neurexin-2 deletions also increased synaptic connectivity in the CA1 region when induced in mature mice and impaired the cognitive flexibility of spatial memory. Thus, neurexin-2 controls the dynamics of hippocampal synaptic circuits by repressing synapse assembly throughout life, a restrictive function that markedly differs from that of neurexin-1 and neurexin-3 and of other synaptic adhesion molecules, suggesting that neurexins evolutionarily diverged into opposing pro- and antisynaptogenic organizers.

7.
Sci Adv ; 7(51): eabk1924, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34919427

RESUMEN

Synapses are thought to be organized by interactions of presynaptic neurexins with postsynaptic ligands, particularly with neuroligins and cerebellins. However, when a neuron forms adjacent pre- and postsynaptic specializations, as in dendrodendritic or axo-axonic synapses, nonfunctional cis neurexin/ligand interactions would be energetically favored. Here, we reveal an organizational principle for preventing synaptic cis interactions ("self-avoidance"). Using dendrodendritic synapses between mitral and granule cells in the olfactory bulb as a paradigm, we show that, owing to its higher binding affinity, cerebellin-1 blocks the cis interaction of neurexins with neuroligins, thereby enabling trans neurexin/neuroligin interaction. In mitral cells, ablating either cerebellin-1 or neuroligins severely impaired granule cell➔mitral cell synapses, as did overexpression of wild-type neurexins but not of mutant neurexins unable to bind to neuroligins. Our data uncover a molecular interaction network that organizes the self-avoidance of nonfunctional neurexin/ligand cis interactions, thus allowing assembly of physiological trans interactions.

8.
J Cell Biol ; 218(8): 2677-2698, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31262725

RESUMEN

Neurexins are well-characterized presynaptic cell adhesion molecules that engage multifarious postsynaptic ligands and organize diverse synapse properties. However, the precise synaptic localization of neurexins remains enigmatic. Using super-resolution microscopy, we demonstrate that neurexin-1 forms discrete nanoclusters at excitatory synapses, revealing a novel organizational feature of synaptic architecture. Synapses generally contain a single nanocluster that comprises more than four neurexin-1 molecules and that also includes neurexin-2 and/or neurexin-3 isoforms. Moreover, we find that neurexin-1 is physiologically cleaved by ADAM10 similar to its ligand neuroligin-1, with ∼4-6% of neurexin-1 and ∼2-3% of neuroligin-1 present in the adult brain as soluble ectodomain proteins. Blocking ADAM10-mediated neurexin-1 cleavage dramatically increased the synaptic neurexin-1 content, thereby elevating the percentage of Homer1(+) excitatory synapses containing neurexin-1 nanoclusters from 40-50% to ∼80%, and doubling the number of neurexin-1 molecules per nanocluster. Taken together, our results reveal an unexpected nanodomain organization of synapses in which neurexin-1 is assembled into discrete presynaptic nanoclusters that are dynamically regulated via ectodomain cleavage.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Nanopartículas/química , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Sinapsis/metabolismo , Proteína ADAM10/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Cultivadas , Epítopos/metabolismo , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Isoformas de Proteínas/metabolismo , Proteolisis
9.
Proc Natl Acad Sci U S A ; 114(7): E1253-E1262, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28154140

RESUMEN

Establishment, specification, and validation of synaptic connections are thought to be mediated by interactions between pre- and postsynaptic cell-adhesion molecules. Arguably, the best-characterized transsynaptic interactions are formed by presynaptic neurexins, which bind to diverse postsynaptic ligands. In a proteomic screen of neurexin-1 (Nrxn1) complexes immunoisolated from mouse brain, we identified carbonic anhydrase-related proteins CA10 and CA11, two homologous, secreted glycoproteins of unknown function that are predominantly expressed in brain. We found that CA10 directly binds in a cis configuration to a conserved membrane-proximal, extracellular sequence of α- and ß-neurexins. The CA10-neurexin complex is stable and stoichiometric, and results in formation of intermolecular disulfide bonds between conserved cysteine residues in neurexins and CA10. CA10 promotes surface expression of α- and ß-neurexins, suggesting that CA10 may form a complex with neurexins in the secretory pathway that facilitates surface transport of neurexins. Moreover, we observed that the Nrxn1 gene expresses from an internal 3' promoter a third isoform, Nrxn1γ, that lacks all Nrxn1 extracellular domains except for the membrane-proximal sequences and that also tightly binds to CA10. Our data expand the understanding of neurexin-based transsynaptic interaction networks by providing further insight into the interactions nucleated by neurexins at the synapse.


Asunto(s)
Encéfalo/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio , Secuencia Conservada , Células HEK293 , Humanos , Ligandos , Ratones
10.
EMBO J ; 35(14): 1537-49, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27261198

RESUMEN

It is now known that proteins associated with neurodegenerative disease can spread throughout the brain in a prionlike manner. However, the mechanisms regulating the trans-synaptic spread propagation, including the neuronal release of these proteins, remain unknown. The interaction of neurodegenerative disease-associated proteins with the molecular chaperone Hsc70 is well known, and we hypothesized that much like disaggregation, refolding, degradation, and even normal function, Hsc70 may dictate the extracellular fate of these proteins. Here, we show that several proteins, including TDP-43, α-synuclein, and the microtubule-associated protein tau, can be driven out of the cell by an Hsc70 co-chaperone, DnaJC5. In fact, DnaJC5 overexpression induced tau release in cells, neurons, and brain tissue, but only when activity of the chaperone Hsc70 was intact and when tau was able to associate with this chaperone. Moreover, release of tau from neurons was reduced in mice lacking the DnaJC5 gene and when the complement of DnaJs in the cell was altered. These results demonstrate that the dynamics of DnaJ/Hsc70 complexes are critically involved in the release of neurodegenerative disease proteins.


Asunto(s)
Proteínas del Choque Térmico HSC70/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas tau/metabolismo , Línea Celular , Proteínas de Unión al ADN/metabolismo , Humanos , alfa-Sinucleína/metabolismo
11.
Learn Mem ; 21(2): 98-104, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24434871

RESUMEN

Angelman Syndrome (AS) is a devastating neurological disorder caused by disruption of the maternal UBE3A gene. Ube3a protein is identified as an E3 ubiquitin ligase that shows neuron-specific imprinting. Despite extensive research evaluating the localization and basal expression profiles of Ube3a in mouse models, the molecular mechanisms whereby Ube3a deficiency results in AS are enigmatic. Using in vitro and in vivo systems we show dramatic changes in the expression of Ube3a following synaptic activation. In primary neuronal culture, neuronal depolarization was found to increase both nuclear and cytoplasmic Ube3a levels. Analogous up-regulation in maternal and paternal Ube3a expression was observed in Ube3a-YFP reporter mice following fear conditioning. Absence of Ube3a led to deficits in the activity-dependent increases in ERK1/2 phosphorylation, which may contribute to reported deficits in synaptic plasticity and cognitive function in AS mice. Taken together, our findings provide novel insight into the regulation of Ube3a by synaptic activity and its potential role in kinase regulation.


Asunto(s)
Síndrome de Angelman/fisiopatología , Encéfalo/fisiopatología , Neuronas/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Síndrome de Angelman/enzimología , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Condicionamiento Psicológico , Citoplasma/metabolismo , Miedo/fisiología , Femenino , Técnicas In Vitro , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Padres , Transmisión Sináptica , Ubiquitina-Proteína Ligasas/genética
12.
J Psychopharmacol ; 27(4): 386-95, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23104248

RESUMEN

The lipoprotein receptor ligand Reelin is important for the processes of normal synaptic plasticity, dendritic morphogenesis, and learning and memory. Heterozygous reeler mice (HRM) show many neuroanatomical, biochemical, and behavioral features that are associated with schizophrenia. HRM show subtle morphological defects including reductions in dendritic spine density, altered synaptic plasticity and behavioral deficits in associative learning and memory and pre-pulse inhibition. The present studies test the hypothesis that in vivo elevation of Reelin levels can rescue synaptic and behavioral phenotypes associated with HRM. We demonstrate that a single in vivo injection of Reelin increases GAD67 expression and alters dendritic spine morphology. In parallel we observed enhancement of hippocampal synaptic function and associative learning and memory. Reelin supplementation also increases pre-pulse inhibition. These results suggest that characteristics of HRM, similar to those observed in schizophrenia, are sensitive to Reelin levels and can be modified with Reelin supplementation in male and female adults.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Trastornos Neurológicos de la Marcha/metabolismo , Discapacidades para el Aprendizaje/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal , Esquizofrenia/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Cruzamientos Genéticos , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Proteínas de la Matriz Extracelular/genética , Femenino , Trastornos Neurológicos de la Marcha/etiología , Glutamato Descarboxilasa/metabolismo , Heterocigoto , Hipocampo/metabolismo , Aprendizaje , Discapacidades para el Aprendizaje/etiología , Masculino , Ratones , Ratones Mutantes Neurológicos , Proteínas del Tejido Nervioso/genética , Inhibición Neural , Neuronas/metabolismo , Proteína Reelina , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Filtrado Sensorial , Serina Endopeptidasas/genética , Transmisión Sináptica
13.
J Neurosci ; 31(40): 14413-23, 2011 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-21976526

RESUMEN

The cellular and molecular mechanisms responsible for the development of inner retinal circuitry are poorly understood. Reelin and apolipoprotein E (apoE), ligands of apoE receptor 2 (ApoER2), are involved in retinal development and degeneration, respectively. Here we describe the function of ApoER2 in the developing and adult retina. ApoER2 expression was highest during postnatal inner retinal synaptic development and was considerably lower in the mature retina. Both during development and in the adult, ApoER2 was expressed by A-II amacrine cells. ApoER2 knock-out (KO) mice had rod bipolar morphogenic defects, altered A-II amacrine dendritic development, and impaired rod-driven retinal responses. The presence of an intact ApoER2 NPxY motif, necessary for binding Disabled-1 and transducing the Reelin signal, was also necessary for development of the rod bipolar pathway, while the alternatively spliced exon 19 was not. Mice deficient in another Reelin receptor, very low-density lipoprotein receptor (VLDLR), had normal rod bipolar morphology but altered A-II amacrine dendritic development. VLDLR KO mice also had reductions in oscillatory potentials and delayed synaptic response intervals. Interestingly, age-related reductions in rod and cone function were observed in both ApoER2 and VLDLR KOs. These results support a pivotal role for ApoER2 in the establishment and maintenance of normal retinal synaptic connectivity.


Asunto(s)
Proteínas Relacionadas con Receptor de LDL/fisiología , Retina/crecimiento & desarrollo , Transmisión Sináptica/fisiología , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes Neurológicos , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Proteína Reelina , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/fisiología
14.
Integr Comp Biol ; 51(4): 514-27, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21705794

RESUMEN

Emerging concepts in developmental biology, such as facilitated variation and dynamical patterning modules, address a major shortcoming of the Modern Synthesis in Biology: how genotypic variation is transduced into functional yet diverse phenotypic variation. Still, we lack a theory to explain how variation at the cellular and tissue level is coordinated into variation at the whole-organism level, especially as priority of cellular and tissue functions change over an individual's lifetime and are influenced by environmental variation. Here, we propose that interactions among a limited subset of physiological factors that we call, integrators, regulate most phenotypic variation at the organismal level. Integrators are unique among physiological factors in that they have the propensity to coordinate the expression of conserved gene modules of most types of tissues because they participate as nodes in a hierarchical network. In other words, integrator networks impose physiological epistasis, meaning that whole-organism phenotypic responses will be influenced by previous experiences, current environmental conditions, and fitness priorities as encoded by individual integrators. Below, we provide examples of how integrator networks are responsible for both profound and irreversible phenotypic changes (i.e., metamorphosis, sexual differentiation) as well as subtler, transient (e.g., pelage color, seasonal fluctuations in lymphoid and reproductive tissues) variation. The goal of this article is not to describe completely how integrator networks function, but to stimulate discussion about the role of physiology in linking genetic to phenotypic variation. To generate useful data sets for understanding integrator networks and to inform whole-organism physiology generally, we describe several useful tools including vector-field editing, response-surface regression, and experiments of life-table responses. We then close by highlighting some implications of integrator networks for conservation and biomedicine.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Vertebrados/genética , Vertebrados/metabolismo , Animales , Genotipo , Fenotipo , Vertebrados/crecimiento & desarrollo
15.
J Biol Chem ; 286(19): 16976-83, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21367866

RESUMEN

The microtubule-associated protein tau, which becomes hyperphosphorylated and pathologically aggregates in a number of these diseases, is extremely sensitive to manipulations of chaperone signaling. For example, Hsp90 inhibitors can reduce the levels of tau in transgenic mouse models of tauopathy. Because of this, we hypothesized that a number of Hsp90 accessory proteins, termed co-chaperones, could also affect tau stability. Perhaps by identifying these co-chaperones, new therapeutics could be designed to specifically target these proteins and facilitate tau clearance. Here, we report that the co-chaperone Cdc37 can regulate aspects of tau pathogenesis. We found that suppression of Cdc37 destabilized tau, leading to its clearance, whereas Cdc37 overexpression preserved tau. Cdc37 was found to co-localize with tau in neuronal cells and to physically interact with tau from human brain. Moreover, Cdc37 levels significantly increased with age. Cdc37 knockdown altered the phosphorylation profile of tau, an effect that was due in part to reduced tau kinase stability, specifically Cdk5 and Akt. Conversely, GSK3ß and Mark2 were unaffected by Cdc37 modulation. Cdc37 overexpression prevented whereas Cdc37 suppression potentiated tau clearance following Hsp90 inhibition. Thus, Cdc37 can regulate tau in two ways: by directly stabilizing it via Hsp90 and by regulating the stability of distinct tau kinases. We propose that changes in the neuronal levels or activity of Cdc37 could dramatically alter the kinome, leading to profound changes in the tau phosphorylation signature, altering its proteotoxicity and stability.


Asunto(s)
Proteínas de Ciclo Celular/química , Chaperoninas/química , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas tau/química , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Línea Celular Tumoral , Células HeLa , Humanos , Inmunohistoquímica/métodos , Chaperonas Moleculares/química , Neuronas/metabolismo , Fosforilación , ARN Interferente Pequeño/metabolismo , Transfección
16.
PLoS One ; 6(2): e17203, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21347244

RESUMEN

BACKGROUND: Apolipoprotein E receptor 2 (ApoEr2) is a postsynaptic protein involved in long-term potentiation (LTP), learning, and memory through unknown mechanisms. We examined the biological effects of ApoEr2 on synapse and dendritic spine formation-processes critical for learning and memory. METHODOLOGY/PRINCIPAL FINDINGS: In a heterologous co-culture synapse assay, overexpression of ApoEr2 in COS7 cells significantly increased colocalization with synaptophysin in primary hippocampal neurons, suggesting that ApoEr2 promotes interaction with presynaptic structures. In primary neuronal cultures, overexpression of ApoEr2 increased dendritic spine density. Consistent with our in vitro findings, ApoEr2 knockout mice had decreased dendritic spine density in cortical layers II/III at 1 month of age. We also tested whether the interaction between ApoEr2 and its cytoplasmic adaptor proteins, specifically X11α and PSD-95, affected synapse and dendritic spine formation. X11α decreased cell surface levels of ApoEr2 along with synapse and dendritic spine density. In contrast, PSD-95 increased cell surface levels of ApoEr2 as well as synapse and dendritic spine density. CONCLUSIONS/SIGNIFICANCE: These results suggest that ApoEr2 plays important roles in structure and function of CNS synapses and dendritic spines, and that these roles are modulated by cytoplasmic adaptor proteins X11α and PSD-95.


Asunto(s)
Espinas Dendríticas/metabolismo , Proteínas Relacionadas con Receptor de LDL/metabolismo , Sinapsis/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Células COS , Chlorocebus aethiops , Técnicas de Cocultivo , Citoplasma/metabolismo , Homólogo 4 de la Proteína Discs Large , Espacio Extracelular/metabolismo , Guanilato-Quinasas/metabolismo , Hipocampo/citología , Humanos , Proteínas Relacionadas con Receptor de LDL/química , Proteínas Relacionadas con Receptor de LDL/deficiencia , Proteínas de la Membrana/metabolismo , Ratones , Proteínas del Tejido Nervioso/metabolismo , Estructura Terciaria de Proteína , Receptores AMPA/metabolismo
17.
J Neurosci ; 29(48): 15317-22, 2009 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19955384

RESUMEN

The three human alleles of apolipoprotein E (APOE) differentially influence outcome after CNS injury and affect one's risk of developing Alzheimer's disease (AD). It remains unclear how ApoE isoforms contribute to various AD-related pathological changes (e.g., amyloid plaques and synaptic and neuron loss). Here, we systematically examined whether apoE isoforms (E2, E3, E4) exhibit differential effects on dendritic spine density and morphology in APOE targeted replacement (TR) mice, which lack AD pathological changes. Using Golgi staining, we found age-dependent effects of APOE4 on spine density in the cortex. The APOE4 TR mice had significantly reduced spine density at three independent time points (4 weeks, 3 months, and 1 year, 27.7% +/- 7.4%, 24.4% +/- 8.6%, and 55.6% +/- 10.5%, respectively) compared with APOE3 TR mice and APOE2 TR mice. Additionally, in APOE4 TR mice, shorter spines were evident compared with other APOE TR mice at 1 year. APOE2 TR mice exhibited longer spines as well as significantly increased apical dendritic arborization in the cortex compared with APOE4 and APOE3 TR mice at 4 weeks. However, there were no differences in spine density across APOE genotypes in hippocampus. These findings demonstrate that apoE isoforms differentially affect dendritic complexity and spine formation, suggesting a role for APOE genotypes not only in acute and chronic brain injuries including AD, but also in normal brain functions.


Asunto(s)
Apolipoproteína E4/fisiología , Corteza Cerebral/citología , Dendritas/fisiología , Dendritas/ultraestructura , Espinas Dendríticas/fisiología , Neuronas/citología , Factores de Edad , Análisis de Varianza , Animales , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Células Cultivadas , Espinas Dendríticas/ultraestructura , Embrión de Mamíferos , Hipocampo/citología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Isoformas de Proteínas/genética , Ratas , Ratas Sprague-Dawley , Tinción con Nitrato de Plata/métodos
18.
J Neurosci ; 29(39): 12079-88, 2009 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-19793966

RESUMEN

Alzheimer's disease and other tauopathies have recently been clustered with a group of nervous system disorders termed protein misfolding diseases. The common element established between these disorders is their requirement for processing by the chaperone complex. It is now clear that the individual components of the chaperone system, such as Hsp70 and Hsp90, exist in an intricate signaling network that exerts pleiotropic effects on a host of substrates. Therefore, we have endeavored to identify new compounds that can specifically regulate individual components of the chaperone family. Here, we hypothesized that chemical manipulation of Hsp70 ATPase activity, a target that has not previously been pursued, could illuminate a new pathway toward chaperone-based therapies. Using a newly developed high-throughput screening system, we identified inhibitors and activators of Hsp70 enzymatic activity. Inhibitors led to rapid proteasome-dependent tau degradation in a cell-based model. Conversely, Hsp70 activators preserved tau levels in the same system. Hsp70 inhibition did not result in general protein degradation, nor did it induce a heat shock response. We also found that inhibiting Hsp70 ATPase activity after increasing its expression levels facilitated tau degradation at lower doses, suggesting that we can combine genetic and pharmacologic manipulation of Hsp70 to control the fate of bound substrates. Disease relevance of this strategy was further established when tau levels were rapidly and substantially reduced in brain tissue from tau transgenic mice. These findings reveal an entirely novel path toward therapeutic intervention of tauopathies by inhibition of the previously untargeted ATPase activity of Hsp70.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/fisiología , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/fisiología , Proteínas tau/fisiología , Adenosina Trifosfatasas/antagonistas & inhibidores , Animales , Colorantes Azulados/química , Colorantes Azulados/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Células HeLa , Humanos , Ratones , Ratones Transgénicos , Pliegue de Proteína/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Transducción de Señal/fisiología
19.
Mol Neurodegener ; 4: 21, 2009 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-19725929

RESUMEN

The lipoprotein receptor system in the hippocampus is intimately involved in the modulation of synaptic transmission and plasticity. The association of specific apoE isoform expression with human neurodegenerative disorders has focused attention on the role of these apoE isoforms in lipoprotein receptor-dependent synaptic modulation. In the present study, we used the apoE2, apoE3 and apoE4 targeted replacement (TR) mice along with recombinant human apoE isoforms to determine the role of apoE isoforms in hippocampus area CA1 synaptic function. While synaptic transmission is unaffected by apoE isoform, long-term potentiation (LTP) is significantly enhanced in apoE4 TR mice versus apoE2 TR mice. ApoE isoform-dependent differences in LTP induction require NMDA-receptor function, and apoE isoform expression alters activation of both ERK and JNK signal transduction. Acute application of specific apoE isoforms also alters LTP induction while decreasing NMDA-receptor mediated field potentials. Furthermore, acute apoE isoform application does not have the same effects on ERK and JNK activation. These findings demonstrate specific, isoform-dependent effects of human apoE isoforms on adult hippocampus synaptic plasticity and highlight mechanistic differences between chronic apoE isoform expression and acute apoE isoform exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...