Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
2.
BMC Med Genomics ; 14(1): 295, 2021 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-34922559

RESUMEN

BACKGROUND: Despite significant therapeutic advances in improving lives of multiple myeloma (MM) patients, it remains mostly incurable, with patients ultimately becoming refractory to therapies. MM is a genetically heterogeneous disease and therapeutic resistance is driven by a complex interplay of disease pathobiology and mechanisms of drug resistance. We applied a multi-omics strategy using tumor-derived gene expression, single nucleotide variant, copy number variant, and structural variant profiles to investigate molecular subgroups in 514 newly diagnosed MM (NDMM) samples and identified 12 molecularly defined MM subgroups (MDMS1-12) with distinct genomic and transcriptomic features. RESULTS: Our integrative approach let us identify NDMM subgroups with transversal profiles to previously described ones, based on single data types, which shows the impact of this approach for disease stratification. One key novel subgroup is our MDMS8, associated with poor clinical outcome [median overall survival, 38 months (global log-rank p-value < 1 × 10-6)], which uniquely presents a broad genomic loss (> 9% of entire genome, t-test p value < 1e-5) driving dysregulation of various transcriptional programs affecting DNA repair and cell cycle/mitotic processes. This subgroup was validated on multiple independent datasets, and a master regulator analyses identified transcription factors controlling MDMS8 transcriptomic profile, including CKS1B and PRKDC among others, which are regulators of the DNA repair and cell cycle pathways. CONCLUSION: Using multi-omics unsupervised clustering we were able to discover a new high-risk multiple myeloma patient segment. This high-risk group presents diverse previously known genetic markers, but also a new characteristic defined by accumulation of genomic loss which seems to drive transcriptional dysregulation of cell cycle, DNA repair and DNA damage. Finally, our work identified various master regulators, including E2F2 and CKS1B as the genes controlling these key biological pathways.


Asunto(s)
Mieloma Múltiple , Ciclo Celular/genética , Daño del ADN/genética , Reparación del ADN/genética , Genómica/métodos , Humanos , Mieloma Múltiple/epidemiología , Mieloma Múltiple/genética , Riesgo
4.
AAPS J ; 23(5): 103, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34453265

RESUMEN

Avadomide is a cereblon E3 ligase modulator and a potent antitumor and immunomodulatory agent. Avadomide trials are challenged by neutropenia as a major adverse event and a dose-limiting toxicity. Intermittent dosing schedules supported by preclinical data provide a strategy to reduce frequency and severity of neutropenia; however, the identification of optimal dosing schedules remains a clinical challenge. Quantitative systems pharmacology (QSP) modeling offers opportunities for virtual screening of efficacy and toxicity levels produced by alternative dose and schedule regimens, thereby supporting decision-making in translational drug development. We formulated a QSP model to capture the mechanism of avadomide-induced neutropenia, which involves cereblon-mediated degradation of transcription factor Ikaros, resulting in a maturation block of the neutrophil lineage. The neutropenia model was integrated with avadomide-specific pharmacokinetic and pharmacodynamic models to capture dose-dependent effects. Additionally, we generated a disease-specific virtual patient population to represent the variability in patient characteristics and response to treatment observed for a diffuse large B-cell lymphoma trial cohort. Model utility was demonstrated by simulating the avadomide effect in the virtual population for various dosing schedules and determining the incidence of high-grade neutropenia, its duration, and the probability of recovery to low-grade neutropenia.


Asunto(s)
Antineoplásicos/efectos adversos , Modelos Biológicos , Neutropenia/prevención & control , Piperidonas/efectos adversos , Quinazolinonas/efectos adversos , Antineoplásicos/administración & dosificación , Variación Biológica Poblacional , Simulación por Computador , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Humanos , Farmacología en Red , Neutropenia/inducido químicamente , Neutropenia/inmunología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Piperidonas/administración & dosificación , Quinazolinonas/administración & dosificación
5.
NPJ Precis Oncol ; 5(1): 60, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183722

RESUMEN

Despite recent advancements in the treatment of multiple myeloma (MM), nearly all patients ultimately relapse and many become refractory to multiple lines of therapies. Therefore, we not only need the ability to predict which patients are at high risk for disease progression but also a means to understand the mechanisms underlying their risk. Here, we report a transcriptional regulatory network (TRN) for MM inferred from cross-sectional multi-omics data from 881 patients that predicts how 124 chromosomal abnormalities and somatic mutations causally perturb 392 transcription regulators of 8549 genes to manifest in distinct clinical phenotypes and outcomes. We identified 141 genetic programs whose activity profiles stratify patients into 25 distinct transcriptional states and proved to be more predictive of outcomes than did mutations. The coherence of these programs and accuracy of our network-based risk prediction was validated in two independent datasets. We observed subtype-specific vulnerabilities to interventions with existing drugs and revealed plausible mechanisms for relapse, including the establishment of an immunosuppressive microenvironment. Investigation of the t(4;14) clinical subtype using the TRN revealed that 16% of these patients exhibit an extreme-risk combination of genetic programs (median progression-free survival of 5 months) that create a distinct phenotype with targetable genes and pathways.

6.
PLoS Med ; 17(11): e1003323, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33147277

RESUMEN

BACKGROUND: The tumor microenvironment (TME) is increasingly appreciated as an important determinant of cancer outcome, including in multiple myeloma (MM). However, most myeloma microenvironment studies have been based on bone marrow (BM) aspirates, which often do not fully reflect the cellular content of BM tissue itself. To address this limitation in myeloma research, we systematically characterized the whole bone marrow (WBM) microenvironment during premalignant, baseline, on treatment, and post-treatment phases. METHODS AND FINDINGS: Between 2004 and 2019, 998 BM samples were taken from 436 patients with newly diagnosed MM (NDMM) at the University of Arkansas for Medical Sciences in Little Rock, Arkansas, United States of America. These patients were 61% male and 39% female, 89% White, 8% Black, and 3% other/refused, with a mean age of 58 years. Using WBM and matched cluster of differentiation (CD)138-selected tumor gene expression to control for tumor burden, we identified a subgroup of patients with an adverse TME associated with 17 fewer months of progression-free survival (PFS) (95% confidence interval [CI] 5-29, 49-69 versus 70-82 months, χ2 p = 0.001) and 15 fewer months of overall survival (OS; 95% CI -1 to 31, 92-120 versus 113-129 months, χ2 p = 0.036). Using immunohistochemistry-validated computational tools that identify distinct cell types from bulk gene expression, we showed that the adverse outcome was correlated with elevated CD8+ T cell and reduced granulocytic cell proportions. This microenvironment develops during the progression of premalignant to malignant disease and becomes less prevalent after therapy, in which it is associated with improved outcomes. In patients with quantified International Staging System (ISS) stage and 70-gene Prognostic Risk Score (GEP-70) scores, taking the microenvironment into consideration would have identified an additional 40 out of 290 patients (14%, premutation p = 0.001) with significantly worse outcomes (PFS, 95% CI 6-36, 49-73 versus 74-90 months) who were not identified by existing clinical (ISS stage III) and tumor (GEP-70) criteria as high risk. The main limitations of this study are that it relies on computationally identified cell types and that patients were treated with thalidomide rather than current therapies. CONCLUSIONS: In this study, we observe that granulocyte signatures in the MM TME contribute to a more accurate prognosis. This implies that future researchers and clinicians treating patients should quantify TME components, in particular monocytes and granulocytes, which are often ignored in microenvironment studies.


Asunto(s)
Médula Ósea/patología , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/patología , Microambiente Tumoral , Adulto , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/tratamiento farmacológico , Pronóstico , Carga Tumoral
7.
Gigascience ; 9(7)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32696951

RESUMEN

BACKGROUND: Mechanistic models, when combined with pertinent data, can improve our knowledge regarding important molecular and cellular mechanisms found in cancer. These models make the prediction of tissue-level response to drug treatment possible, which can lead to new therapies and improved patient outcomes. Here we present a data-driven multiscale modeling framework to study molecular interactions between cancer, stromal, and immune cells found in the tumor microenvironment. We also develop methods to use molecular data available in The Cancer Genome Atlas to generate sample-specific models of cancer. RESULTS: By combining published models of different cells relevant to pancreatic ductal adenocarcinoma (PDAC), we built an agent-based model of the multicellular pancreatic tumor microenvironment, formally describing cell type-specific molecular interactions and cytokine-mediated cell-cell communications. We used an ensemble-based modeling approach to systematically explore how variations in the tumor microenvironment affect the viability of cancer cells. The results suggest that the autocrine loop involving EGF signaling is a key interaction modulator between pancreatic cancer and stellate cells. EGF is also found to be associated with previously described subtypes of PDAC. Moreover, the model allows a systematic exploration of the effect of possible therapeutic perturbations; our simulations suggest that reducing bFGF secretion by stellate cells will have, on average, a positive impact on cancer apoptosis. CONCLUSIONS: The developed framework allows model-driven hypotheses to be generated regarding therapeutically relevant PDAC states with potential molecular and cellular drivers indicating specific intervention strategies.


Asunto(s)
Algoritmos , Carcinoma Ductal Pancreático/etiología , Carcinoma Ductal Pancreático/patología , Susceptibilidad a Enfermedades , Modelos Biológicos , Comunicación Autocrina , Carcinoma Ductal Pancreático/metabolismo , Comunicación Celular/genética , Citocinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Especificidad de Órganos , Comunicación Paracrina , Fenotipo
8.
Sci Rep ; 10(1): 1915, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024856

RESUMEN

Failure to clear antigens causes CD8+ T cells to become increasingly hypo-functional, a state known as exhaustion. We combined manually extracted information from published literature with gene expression data from diverse model systems to infer a set of molecular regulatory interactions that underpin exhaustion. Topological analysis and simulation modeling of the network suggests CD8+ T cells undergo 2 major transitions in state following stimulation. The time cells spend in the earlier pro-memory/proliferative (PP) state is a fixed and inherent property of the network structure. Transition to the second state is necessary for exhaustion. Combining insights from network topology analysis and simulation modeling, we predict the extent to which each node in our network drives cells towards an exhausted state. We demonstrate the utility of our approach by experimentally testing the prediction that drug-induced interference with EZH2 function increases the proportion of pro-memory/proliferative cells in the early days post-activation.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Redes Reguladoras de Genes/inmunología , Modelos Inmunológicos , Animales , Linfocitos T CD8-positivos/metabolismo , Simulación por Computador , Conjuntos de Datos como Asunto , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Memoria Inmunológica/efectos de los fármacos , Memoria Inmunológica/inmunología , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , RNA-Seq , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología
9.
Leukemia ; 34(7): 1866-1874, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32060406

RESUMEN

While the past decade has seen meaningful improvements in clinical outcomes for multiple myeloma patients, a subset of patients does not benefit from current therapeutics for unclear reasons. Many gene expression-based models of risk have been developed, but each model uses a different combination of genes and often involves assaying many genes making them difficult to implement. We organized the Multiple Myeloma DREAM Challenge, a crowdsourced effort to develop models of rapid progression in newly diagnosed myeloma patients and to benchmark these against previously published models. This effort lead to more robust predictors and found that incorporating specific demographic and clinical features improved gene expression-based models of high risk. Furthermore, post-challenge analysis identified a novel expression-based risk marker, PHF19, which has recently been found to have an important biological role in multiple myeloma. Lastly, we show that a simple four feature predictor composed of age, ISS, and expression of PHF19 and MMSET performs similarly to more complex models with many more gene expression features included.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Ensayos Clínicos como Asunto/estadística & datos numéricos , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Modelos Estadísticos , Mieloma Múltiple/patología , Factores de Transcripción/metabolismo , Biomarcadores de Tumor/genética , Ciclo Celular , Proliferación Celular , Proteínas de Unión al ADN/genética , Bases de Datos Factuales , Conjuntos de Datos como Asunto , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Factores de Transcripción/genética , Células Tumorales Cultivadas
10.
Sci Rep ; 10(1): 605, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953524

RESUMEN

Finding biomarkers that provide shared link between disease severity, drug-induced pharmacodynamic effects and response status in human trials can provide number of values for patient benefits: elucidating current therapeutic mechanism-of-action, and, back-translating to fast-track development of next-generation therapeutics. Both opportunities are predicated on proactive generation of human molecular profiles that capture longitudinal trajectories before and after pharmacological intervention. Here, we present the largest plasma proteomic biomarker dataset available to-date and the corresponding analyses from placebo-controlled Phase III clinical trials of the phosphodiesterase type 4 inhibitor apremilast in psoriasis (PSOR), psoriatic arthritis (PsA), and ankylosing spondylitis (AS) from 526 subjects overall. Using approximately 150 plasma analytes tracked across three time points, we identified IL-17A and KLK-7 as biomarkers for disease severity and apremilast pharmacodynamic effect in psoriasis patients. Combined decline rate of KLK-7, PEDF, MDC and ANGPTL4 by Week 16 represented biomarkers for the responder subgroup, shedding insights into therapeutic mechanisms. In ankylosing spondylitis patients, IL-6 and LRG-1 were identified as biomarkers with concordance to disease severity. Apremilast-induced LRG-1 increase was consistent with the overall lack of efficacy in ankylosing spondylitis. Taken together, these findings expanded the mechanistic knowledge base of apremilast and provided translational foundations to accelerate future efforts including compound differentiation, combination, and repurposing.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Biomarcadores/sangre , Proteómica/métodos , Psoriasis/tratamiento farmacológico , Espondilitis Anquilosante/tratamiento farmacológico , Talidomida/análogos & derivados , Antiinflamatorios no Esteroideos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glicoproteínas/sangre , Humanos , Interleucina-17/sangre , Interleucina-6/sangre , Calicreínas/sangre , Psoriasis/metabolismo , Índice de Severidad de la Enfermedad , Espondilitis Anquilosante/metabolismo , Talidomida/administración & dosificación , Talidomida/farmacología , Resultado del Tratamiento
11.
Blood ; 135(13): 996-1007, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31977002

RESUMEN

Treatment options for relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) are limited, with no standard of care; prognosis is poor, with 4- to 6-month median survival. Avadomide (CC-122) is a cereblon-modulating agent with immunomodulatory and direct antitumor activities. This phase 1 dose-expansion study assessed safety and clinical activity of avadomide monotherapy in patients with de novo R/R DLBCL and transformed lymphoma. Additionally, a novel gene expression classifier, which identifies tumors with a high immune cell infiltration, was shown to enrich for response to avadomide in R/R DLBCL. Ninety-seven patients with R/R DLBCL, including 12 patients with transformed lymphoma, received 3 to 5 mg avadomide administered on continuous or intermittent schedules until unacceptable toxicity, disease progression, or withdrawal. Eighty-two patients (85%) experienced ≥1 grade 3/4 treatment-emergent adverse events (AEs), most commonly neutropenia (51%), infections (24%), anemia (12%), and febrile neutropenia (10%). Discontinuations because of AEs occurred in 10% of patients. Introduction of an intermittent 5/7-day schedule improved tolerability and reduced frequency and severity of neutropenia, febrile neutropenia, and infections. Among 84 patients with de novo R/R DLBCL, overall response rate (ORR) was 29%, including 11% complete response (CR). Responses were cell-of-origin independent. Classifier-positive DLBCL patients (de novo) had an ORR of 44%, median progression-free survival (mPFS) of 6 months, and 16% CR vs an ORR of 19%, mPFS of 1.5 months, and 5% CR in classifier-negative patients (P = .0096). Avadomide is being evaluated in combination with other antilymphoma agents. This trial was registered at www.clinicaltrials.gov as #NCT01421524.


Asunto(s)
Antineoplásicos/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Piperidonas/uso terapéutico , Quinazolinonas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Biomarcadores , Resistencia a Antineoplásicos , Femenino , Humanos , Inmunofenotipificación , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/mortalidad , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Oportunidad Relativa , Piperidonas/administración & dosificación , Piperidonas/efectos adversos , Piperidonas/farmacocinética , Pronóstico , Quinazolinonas/administración & dosificación , Quinazolinonas/efectos adversos , Quinazolinonas/farmacocinética , Recurrencia , Retratamiento , Linfocitos T/inmunología , Linfocitos T/metabolismo , Resultado del Tratamiento
12.
Blood ; 135(13): 1008-1018, 2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31977005

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease, commonly described by cell-of-origin (COO) molecular subtypes. We sought to identify novel patient subgroups through an unsupervised analysis of a large public dataset of gene expression profiles from newly diagnosed de novo DLBCL patients, yielding 2 biologically distinct subgroups characterized by differences in the tumor microenvironment. Pathway analysis and immune deconvolution algorithms identified higher B-cell content and a strong proliferative signal in subgroup A and enriched T-cell, macrophage, and immune/inflammatory signals in subgroup B, reflecting similar biology to published DLBCL stratification research. A gene expression classifier, featuring 26 gene expression scores, was derived from the public dataset to discriminate subgroup A (classifier-negative, immune-low) and subgroup B (classifier-positive, immune-high) patients. Subsequent application to an independent series of diagnostic biopsies replicated the subgroups, with immune cell composition confirmed via immunohistochemistry. Avadomide, a CRL4CRBN E3 ubiquitin ligase modulator, demonstrated clinical activity in relapsed/refractory DLBCL patients, independent of COO subtypes. Given the immunomodulatory activity of avadomide and the need for a patient-selection strategy, we applied the gene expression classifier to pretreatment biopsies from relapsed/refractory DLBCL patients receiving avadomide (NCT01421524). Classifier-positive patients exhibited an enrichment in response rate and progression-free survival of 44% and 6.2 months vs 19% and 1.6 months for classifier-negative patients (hazard ratio, 0.49; 95% confidence interval, 0.280-0.86; P = .0096). The classifier was not prognostic for rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone or salvage immunochemotherapy. The classifier described here discriminates DLBCL tumors based on tumor and nontumor composition and has potential utility to enrich for clinical response to immunomodulatory agents, including avadomide.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso/genética , Adulto , Anciano , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biopsia , Biología Computacional/métodos , Femenino , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Humanos , Linfoma de Células B Grandes Difuso/diagnóstico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Transcriptoma
13.
Haematologica ; 105(4): 1055-1066, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31221783

RESUMEN

MYC is a widely acting transcription factor and its deregulation is a crucial event in many human cancers. MYC is important biologically and clinically in multiple myeloma, but the mechanisms underlying its dysregulation are poorly understood. We show that MYC rearrangements are present in 36.0% of newly diagnosed myeloma patients, as detected in the largest set of next generation sequencing data to date (n=1,267). Rearrangements were complex and associated with increased expression of MYC and PVT1, but not other genes at 8q24. The highest effect on gene expression was detected in cases where the MYC locus is juxtaposed next to super-enhancers associated with genes such as IGH, IGK, IGL, TXNDC5/BMP6, FAM46C and FOXO3 We identified three hotspots of recombination at 8q24, one of which is enriched for IGH-MYC translocations. Breakpoint analysis indicates primary myeloma rearrangements involving the IGH locus occur through non-homologous end joining, whereas secondary MYC rearrangements occur through microhomology-mediated end joining. This mechanism is different to lymphomas, where non-homologous end joining generates MYC rearrangements. Rearrangements resulted in overexpression of key genes and chromatin immunoprecipitation-sequencing identified that HK2, a member of the glucose metabolism pathway, is directly over-expressed through binding of MYC at its promoter.


Asunto(s)
Genes myc , Mieloma Múltiple , ARN Largo no Codificante/genética , Genes de las Cadenas Pesadas de las Inmunoglobulinas , Humanos , Hibridación Fluorescente in Situ , Mieloma Múltiple/genética , Proteína Disulfuro Isomerasas , Translocación Genética
14.
PLoS One ; 14(11): e0224693, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31743345

RESUMEN

Immune cell infiltration of tumors and the tumor microenvironment can be an important component for determining patient outcomes. For example, immune and stromal cell presence inferred by deconvolving patient gene expression data may help identify high risk patients or suggest a course of treatment. One particularly powerful family of deconvolution techniques uses signature matrices of genes that uniquely identify each cell type as determined from single cell type purified gene expression data. Many methods from this family have been recently published, often including new signature matrices appropriate for a single purpose, such as investigating a specific type of tumor. The package ADAPTS helps users make the most of this expanding knowledge base by introducing a framework for cell type deconvolution. ADAPTS implements modular tools for customizing signature matrices for new tissue types by adding custom cell types or building new matrices de novo, including from single cell RNAseq data. It includes a common interface to several popular deconvolution algorithms that use a signature matrix to estimate the proportion of cell types present in heterogenous samples. ADAPTS also implements a novel method for clustering cell types into groups that are difficult to distinguish by deconvolution and then re-splitting those clusters using hierarchical deconvolution. We demonstrate that the techniques implemented in ADAPTS improve the ability to reconstruct the cell types present in a single cell RNAseq data set in a blind predictive analysis. ADAPTS is currently available for use in R on CRAN and GitHub.


Asunto(s)
Biología Computacional/métodos , Neoplasias/genética , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Programas Informáticos , Análisis por Conglomerados , Conjuntos de Datos como Asunto , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Neoplasias/inmunología , Neoplasias/patología , Máquina de Vectores de Soporte , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
15.
Leukemia ; 33(1): 159-170, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29967379

RESUMEN

Patients with newly diagnosed multiple myeloma (NDMM) with high-risk disease are in need of new treatment strategies to improve the outcomes. Multiple clinical, cytogenetic, or gene expression features have been used to identify high-risk patients, each of which has significant weaknesses. Inclusion of molecular features into risk stratification could resolve the current challenges. In a genome-wide analysis of the largest set of molecular and clinical data established to date from NDMM, as part of the Myeloma Genome Project, we have defined DNA drivers of aggressive clinical behavior. Whole-genome and exome data from 1273 NDMM patients identified genetic factors that contribute significantly to progression free survival (PFS) and overall survival (OS) (cumulative R2 = 18.4% and 25.2%, respectively). Integrating DNA drivers and clinical data into a Cox model using 784 patients with ISS, age, PFS, OS, and genomic data, the model has a cumlative R2 of 34.3% for PFS and 46.5% for OS. A high-risk subgroup was defined by recursive partitioning using either a) bi-allelic TP53 inactivation or b) amplification (≥4 copies) of CKS1B (1q21) on the background of International Staging System III, comprising 6.1% of the population (median PFS = 15.4 months; OS = 20.7 months) that was validated in an independent dataset. Double-Hit patients have a dire prognosis despite modern therapies and should be considered for novel therapeutic approaches.


Asunto(s)
Biomarcadores de Tumor/genética , Aberraciones Cromosómicas , Genoma Humano , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mieloma Múltiple/genética , Humanos , Mieloma Múltiple/diagnóstico , Pronóstico , Factores de Riesgo , Tasa de Supervivencia
16.
BMC Genomics ; 19(1): 703, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30253752

RESUMEN

BACKGROUND: RNA-seq is a reference technology for determining alternative splicing at genome-wide level. Exon arrays remain widely used for the analysis of gene expression, but show poor validation rate with regard to splicing events. Commercial arrays that include probes within exon junctions have been developed in order to overcome this problem. We compare the performance of RNA-seq (Illumina HiSeq) and junction arrays (Affymetrix Human Transcriptome array) for the analysis of transcript splicing events. Three different breast cancer cell lines were treated with CX-4945, a drug that severely affects splicing. To enable a direct comparison of the two platforms, we adapted EventPointer, an algorithm that detects and labels alternative splicing events using junction arrays, to work also on RNA-seq data. Common results and discrepancies between the technologies were validated and/or resolved by over 200 PCR experiments. RESULTS: As might be expected, RNA-seq appears superior in cases where the technologies disagree and is able to discover novel splicing events beyond the limitations of physical probe-sets. We observe a high degree of coherence between the two technologies, however, with correlation of EventPointer results over 0.90. Through decimation, the detection power of the junction arrays is equivalent to RNA-seq with up to 60 million reads. CONCLUSIONS: Our results suggest, therefore, that exon-junction arrays are a viable alternative to RNA-seq for detection of alternative splicing events when focusing on well-described transcriptional regions.


Asunto(s)
Algoritmos , Empalme Alternativo , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ARN , Línea Celular Tumoral , Humanos , Reacción en Cadena de la Polimerasa
17.
Blood ; 132(6): 587-597, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-29884741

RESUMEN

Understanding the profile of oncogene and tumor suppressor gene mutations with their interactions and impact on the prognosis of multiple myeloma (MM) can improve the definition of disease subsets and identify pathways important in disease pathobiology. Using integrated genomics of 1273 newly diagnosed patients with MM, we identified 63 driver genes, some of which are novel, including IDH1, IDH2, HUWE1, KLHL6, and PTPN11 Oncogene mutations are significantly more clonal than tumor suppressor mutations, indicating they may exert a bigger selective pressure. Patients with more driver gene abnormalities are associated with worse outcomes, as are identified mechanisms of genomic instability. Oncogenic dependencies were identified between mutations in driver genes, common regions of copy number change, and primary translocation and hyperdiploidy events. These dependencies included associations with t(4;14) and mutations in FGFR3, DIS3, and PRKD2; t(11;14) with mutations in CCND1 and IRF4; t(14;16) with mutations in MAF, BRAF, DIS3, and ATM; and hyperdiploidy with gain 11q, mutations in FAM46C, and MYC rearrangements. These associations indicate that the genomic landscape of myeloma is predetermined by the primary events upon which further dependencies are built, giving rise to a nonrandom accumulation of genetic hits. Understanding these dependencies may elucidate potential evolutionary patterns and lead to better treatment regimens.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple/genética , Mutagénesis , Oncogenes , Células Clonales , Análisis Mutacional de ADN , ADN de Neoplasias/genética , Conjuntos de Datos como Asunto , Dosificación de Gen , Estudio de Asociación del Genoma Completo , Inestabilidad Genómica , Genómica , Humanos , Pérdida de Heterocigocidad , Mieloma Múltiple/patología , Mutación , Pronóstico , Translocación Genética , Resultado del Tratamiento , Secuenciación del Exoma
18.
Bioinformatics ; 34(11): 1884-1892, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29390084

RESUMEN

Motivation: Protein-protein interactions (PPI) play a crucial role in our understanding of protein function and biological processes. The standardization and recording of experimental findings is increasingly stored in ontologies, with the Gene Ontology (GO) being one of the most successful projects. Several PPI evaluation algorithms have been based on the application of probabilistic frameworks or machine learning algorithms to GO properties. Here, we introduce a new training set design and machine learning based approach that combines dependent heterogeneous protein annotations from the entire ontology to evaluate putative co-complex protein interactions determined by empirical studies. Results: PPI annotations are built combinatorically using corresponding GO terms and InterPro annotation. We use a S.cerevisiae high-confidence complex dataset as a positive training set. A series of classifiers based on Maximum Entropy and support vector machines (SVMs), each with a composite counterpart algorithm, are trained on a series of training sets. These achieve a high performance area under the ROC curve of ≤0.97, outperforming go2ppi-a previously established prediction tool for protein-protein interactions (PPI) based on Gene Ontology (GO) annotations. Availability and implementation: https://github.com/ima23/maxent-ppi. Contact: sbh11@cl.cam.ac.uk. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Ontología de Genes , Anotación de Secuencia Molecular , Máquina de Vectores de Soporte , Entropía
19.
Br J Haematol ; 179(3): 399-409, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28771673

RESUMEN

Lenalidomide is an immunomodulatory agent that has demonstrated clinical benefit for patients with relapsed or refractory mantle cell lymphoma (MCL); however, despite this observed clinical activity, the mechanism of action (MOA) of lenalidomide has not been characterized in this setting. We investigated the MOA of lenalidomide in clinical samples from patients enrolled in the CC-5013-MCL-002 trial (NCT00875667) comparing single-agent lenalidomide versus investigator's choice single-agent therapy and validated our findings in pre-clinical models of MCL. Our results revealed a significant increase in natural killer (NK) cells relative to total lymphocytes in lenalidomide responders compared to non-responders that was associated with a trend towards prolonged progression-free survival and overall survival. Clinical response to lenalidomide was independent of baseline tumour microenvironment expression of its molecular target, cereblon, as well as genetic mutations reported to impact clinical response to the Bruton tyrosine kinase inhibitor ibrutinib. Preclinical experiments revealed lenalidomide enhanced NK cell-mediated cytotoxicity against MCL cells via increased lytic immunological synapse formation and secretion of granzyme B. In contrast, lenalidomide exhibited minimal direct cytotoxic effects against MCL cells. Taken together, these data provide the first insight into the clinical activity of lenalidomide against MCL, revealing a predominately immune-mediated MOA.


Asunto(s)
Factores Inmunológicos/farmacología , Células Asesinas Naturales/efectos de los fármacos , Linfoma de Células del Manto/tratamiento farmacológico , Talidomida/análogos & derivados , Proteínas Adaptadoras Transductoras de Señales , Adenina/análogos & derivados , Técnicas de Cocultivo , Citotoxicidad Inmunológica/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/uso terapéutico , Células Asesinas Naturales/inmunología , Lenalidomida , Recuento de Linfocitos , Linfoma de Células del Manto/genética , Linfoma de Células del Manto/inmunología , Linfoma de Células del Manto/metabolismo , Mutación , Péptido Hidrolasas/metabolismo , Piperidinas , Pirazoles/administración & dosificación , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Talidomida/administración & dosificación , Talidomida/farmacología , Talidomida/uso terapéutico , Resultado del Tratamiento , Células Tumorales Cultivadas , Microambiente Tumoral , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA