Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(1): e9752, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36713492

RESUMEN

The viability of populations can be quantified with several measures, such as the probability of extinction, the mean time to extinction, or the population size. While conservation management decisions can be based on these measures, it has not yet been explored systematically if different viability measures rank species and scenarios similarly and if one viability measure can be converted into another to compare studies. To address this challenge, we conducted a quantitative comparison of eight viability measures based on the simulated population dynamics of more than 4500 virtual species. We compared (a) the ranking of scenarios based on different viability measures, (b) assessed direct correlations between the measures, and (c) explored if parameters in the simulation models can alter the relationship between pairs of viability measures. We found that viability measures ranked species similarly. Despite this, direct correlations between the different measures were often weak and could not be generalized. This can be explained by the loss of information due to the aggregation of raw data into a single number, the effect of model parameters on the relationship between viability measures, and because distributions, such as the probability of extinction over time, cannot be ranked objectively. Similar scenario rankings by different viability measures show that the choice of the viability metric does in many cases not alter which population is regarded more viable or which management option is the best. However, the more two scenarios or populations differ, the more likely it becomes that different measures produce different rankings. We thus recommend that PVA studies publish raw simulation data, which not only describes all risks and opportunities to the reader but also facilitates meta-analyses of PVA studies.

2.
Front Plant Sci ; 12: 748055, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34759941

RESUMEN

Treeline ecosystems are of great scientific interest to study the effects of limiting environmental conditions on tree growth. However, tree growth is multidimensional, with complex interactions between height and radial growth. In this study, we aimed to disentangle effects of height and climate on xylem anatomy of white spruce [Picea glauca (Moench) Voss] at three treeline sites in Alaska; i.e., one warm and drought-limited, and two cold, temperature-limited. To analyze general growth differences between trees from different sites, we used data on annual ring width, diameter at breast height (DBH), and tree height. A representative subset of the samples was used to investigate xylem anatomical traits. We then used linear mixed-effects models to estimate the effects of height and climatic variables on our study traits. Our study showed that xylem anatomical traits in white spruce can be directly and indirectly controlled by environmental conditions: hydraulic-related traits seem to be mainly influenced by tree height, especially in the earlywood. Thus, they are indirectly driven by environmental conditions, through the environment's effects on tree height. Traits related to mechanical support show a direct response to environmental conditions, mainly temperature, especially in the latewood. These results highlight the importance of assessing tree growth in a multidimensional way by considering both direct and indirect effects of environmental forcing to better understand the complexity of tree growth responses to the environment.

3.
Front Plant Sci ; 12: 767400, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804101

RESUMEN

The recent developments in artificial intelligence have the potential to facilitate new research methods in ecology. Especially Deep Convolutional Neural Networks (DCNNs) have been shown to outperform other approaches in automatic image analyses. Here we apply a DCNN to facilitate quantitative wood anatomical (QWA) analyses, where the main challenges reside in the detection of a high number of cells, in the intrinsic variability of wood anatomical features, and in the sample quality. To properly classify and interpret features within the images, DCNNs need to undergo a training stage. We performed the training with images from transversal wood anatomical sections, together with manually created optimal outputs of the target cell areas. The target species included an example for the most common wood anatomical structures: four conifer species; a diffuse-porous species, black alder (Alnus glutinosa L.); a diffuse to semi-diffuse-porous species, European beech (Fagus sylvatica L.); and a ring-porous species, sessile oak (Quercus petraea Liebl.). The DCNN was created in Python with Pytorch, and relies on a Mask-RCNN architecture. The developed algorithm detects and segments cells, and provides information on the measurement accuracy. To evaluate the performance of this tool we compared our Mask-RCNN outputs with U-Net, a model architecture employed in a similar study, and with ROXAS, a program based on traditional image analysis techniques. First, we evaluated how many target cells were correctly recognized. Next, we assessed the cell measurement accuracy by evaluating the number of pixels that were correctly assigned to each target cell. Overall, the "learning process" defining artificial intelligence plays a key role in overcoming the issues that are usually manually solved in QWA analyses. Mask-RCNN is the model that better detects which are the features characterizing a target cell when these issues occur. In general, U-Net did not attain the other algorithms' performance, while ROXAS performed best for conifers, and Mask-RCNN showed the highest accuracy in detecting target cells and segmenting lumen areas of angiosperms. Our research demonstrates that future software tools for QWA analyses would greatly benefit from using DCNNs, saving time during the analysis phase, and providing a flexible approach that allows model retraining.

4.
Sci Total Environ ; 798: 149267, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34332391

RESUMEN

Knowledge on the adaptation of trees to rapid environmental changes is essential to preserve forests and their ecosystem services under climate change. Treeline populations are particularly suitable for studying adaptation processes in trees, as environmental stress together with reduced gene flow can enhance local adaptation. We investigated white spruce (Picea glauca) populations in Alaska on one moisture-limited and two cold-limited treeline sites with a paired plot design of one forest and one treeline population each, resulting in six plots. Additionally, one forest plot in the middle of the distribution range complements the study design. We combined spatial, climatic and dendrochronological data with neutral genetic marker of 2203 trees to investigate population genetic structure and drivers of tree growth. We used several individual-based approaches including random slope mixed-effects models to test the influence of genetic similarity and microenvironment on growth performance. A high degree of genetic diversity was found within each of the seven plots associated with high rates of gene flow. We discovered a low genetic differentiation between the three sites which was better explained by geographic distances than by environmental differences, indicating genetic drift as the main driver of population differentiation. Our findings indicated that microenvironmental features had an overall larger influence on growth performances than genetic similarity among individuals. The effects of climate on growth differed between sites but were smaller than the effect of tree size. Overall, our results suggest that the high genetic diversity of white spruce may result in a wider range of phenotypes which enhances the efficiency of selection when the species is facing rapid climatic changes. In addition, the large intra-individual variability in growth responses may indicate the high phenotypic plasticity of white spruce which can buffer short-term environmental changes and, thus, allow enduring the present changing climate conditions.


Asunto(s)
Picea , Cambio Climático , Ecosistema , Bosques , Humanos , Picea/genética , Árboles
5.
Glob Chang Biol ; 26(6): 3212-3220, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32124523

RESUMEN

Tree-ring records provide global high-resolution information on tree-species responses to global change, forest carbon and water dynamics, and past climate variability and extremes. The underlying assumption is a stationary (time-stable), quasi-linear relationship between tree growth and environment, which however conflicts with basic ecological and evolutionary theory. Indeed, our global assessment of the relevant tree-ring literature demonstrates non-stationarity in the majority of tested cases, not limited to specific proxies, environmental parameters, regions or species. Non-stationarity likely represents the general nature of the relationship between tree-growth proxies and environment. Studies assuming stationarity however score two times more citations influencing other fields of science and the science-policy interface. To reconcile ecological reality with the application of tree-ring proxies for climate or environmental estimates, we provide a clarification of the stationarity concept, propose a simple confidence framework for the re-evaluation of existing studies and recommend the use of a new statistical tool to detect non-stationarity in tree-ring proxies. Our contribution is meant to stimulate and facilitate discussion in light of our results to help increase confidence in tree-ring-based climate and environmental estimates for science, the public and policymakers.


Asunto(s)
Clima , Árboles , Carbono , Cambio Climático , Bosques
6.
Glob Chang Biol ; 26(3): 1842-1856, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31799729

RESUMEN

Tree growth at northern treelines is generally temperature-limited due to cold and short growing seasons. However, temperature-induced drought stress was repeatedly reported for certain regions of the boreal forest in northwestern North America, provoked by a significant increase in temperature and possibly reinforced by a regime shift of the pacific decadal oscillation (PDO). The aim of this study is to better understand physiological growth reactions of white spruce, a dominant species of the North American boreal forest, to PDO regime shifts using quantitative wood anatomy and traditional tree-ring width (TRW) analysis. We investigated white spruce growth at latitudinal treeline across a >1,000 km gradient in northwestern North America. Functionally important xylem anatomical traits (lumen area, cell-wall thickness, cell number) and TRW were correlated with the drought-sensitive standardized precipitation-evapotranspiration index of the growing season. Correlations were computed separately for complete phases of the PDO in the 20th century, representing alternating warm/dry (1925-1946), cool/wet (1947-1976) and again warm/dry (1977-1998) climate regimes. Xylem anatomical traits revealed water-limiting conditions in both warm/dry PDO regimes, while no or spatially contrasting associations were found for the cool/wet regime, indicating a moisture-driven shift in growth-limiting factors between PDO periods. TRW reflected only the last shift of 1976/1977, suggesting different climate thresholds and a higher sensitivity to moisture availability of xylem anatomical traits compared to TRW. This high sensitivity of xylem anatomical traits permits to identify first signs of moisture-driven growth in treeline white spruce at an early stage, suggesting quantitative wood anatomy being a powerful tool to study climate change effects in the northwestern North American treeline ecotone. Projected temperature increase might challenge growth performance of white spruce as a key component of the North American boreal forest biome in the future, when drier conditions are likely to occur with higher frequency and intensity.


Asunto(s)
Picea , América del Norte , Taiga , Árboles , Xilema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...