Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 54(41): 6402-12, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26418890

RESUMEN

KCNE1 is a single transmembrane protein that modulates the function of voltage-gated potassium channels, including KCNQ1. Hereditary mutations in the genes encoding either protein can result in diseases such as congenital deafness, long QT syndrome, ventricular tachyarrhythmia, syncope, and sudden cardiac death. Despite the biological significance of KCNE1, the structure and dynamic properties of its physiologically relevant native membrane-bound state are not fully understood. In this study, the structural dynamics and topology of KCNE1 in bilayered lipid vesicles was investigated using site-directed spin labeling (SDSL) and electron paramagnetic resonance (EPR) spectroscopy. A 53-residue nitroxide EPR scan of the KCNE1 protein sequence including all 27 residues of the transmembrane domain (45-71) and 26 residues of the N- and C-termini of KCNE1 in lipid bilayered vesicles was analyzed in terms of nitroxide side-chain motion. Continuous wave-EPR spectral line shape analysis indicated the nitroxide spin label side-chains located in the KCNE1 TMD are less mobile when compared to the extracellular region of KCNE1. The EPR data also revealed that the C-terminus of KCNE1 is more mobile when compared to the N-terminus. EPR power saturation experiments were performed on 41 sites including 18 residues previously proposed to reside in the transmembrane domain (TMD) and 23 residues of the N- and C-termini to determine the topology of KCNE1 with respect to the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) lipid bilayers. The results indicated that the transmembrane domain is indeed buried within the membrane, spanning the width of the lipid bilayer. Power saturation data also revealed that the extracellular region of KCNE1 is solvent-exposed with some of the portions partially or weakly interacting with the membrane surface. These results are consistent with the previously published solution NMR structure of KCNE1 in micelles.


Asunto(s)
Membrana Dobles de Lípidos/química , Canales de Potasio con Entrada de Voltaje/química , Secuencia de Aminoácidos , Espectroscopía de Resonancia por Spin del Electrón , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Canales de Potasio con Entrada de Voltaje/genética , Conformación Proteica
2.
Biochemistry ; 52(38): 6627-32, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23984855

RESUMEN

Pulsed EPR DEER structural studies of membrane proteins in a lipid bilayer have often been hindered by difficulties in extracting accurate distances when compared to those of globular proteins. In this study, we employed a combination of three recently developed methodologies, (1) bifunctional spin labels (BSL), (2) SMA-Lipodisq nanoparticles, and (3) Q band pulsed EPR measurements, to obtain improved signal sensitivity, increased transverse relaxation time, and more accurate and precise distances in DEER measurements on the integral membrane protein KCNE1. The KCNE1 EPR data indicated an ∼2-fold increase in the transverse relaxation time for the SMA-Lipodisq nanoparticles when compared to those of proteoliposomes and narrower distance distributions for the BSL when compared to those of the standard MTSL. The certainty of information content in DEER data obtained for KCNE1 in SMA-Lipodisq nanoparticles is comparable to that in micelles. The combination of techniques will enable researchers to potentially obtain more precise distances in cases where the traditional spin labels and membrane systems yield imprecise distance distributions.


Asunto(s)
Proteínas de la Membrana/química , Canales de Potasio con Entrada de Voltaje/química , Óxidos N-Cíclicos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Membrana Dobles de Lípidos , Mesilatos , Nanopartículas , Canales de Potasio con Entrada de Voltaje/genética , Marcadores de Spin
3.
Biochemistry ; 50(50): 10851-9, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22085289

RESUMEN

KCNE1 (minK), found in the human heart and cochlea, is a transmembrane protein that modulates the voltage-gated potassium KCNQ1 channel. While KCNE1 has previously been the subject of extensive structural studies in lyso-phospholipid detergent micelles, key observations have yet to be confirmed and refined in lipid bilayers. In this study, a reliable method for reconstituting KCNE1 into lipid bilayer vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(1'-rac-glycerol) (sodium salt) (POPG) was developed. Microinjection of the proteoliposomes into Xenopus oocytes expressing the human KCNQ1 (K(V)7.1) voltage-gated potassium channel led to nativelike modulation of the channel. Circular dichroism spectroscopy demonstrated that the percent helicity of KCNE1 is significantly higher for the protein reconstituted in lipid vesicles than for the previously described structure in 1.0% 1-myristoyl-2-hydroxy-sn-glycero-3-phospho(1'-rac-glycerol) (sodium salt) (LMPG) micelles. SDSL electron paramagnetic resonance spectroscopic techniques were used to probe the local structure and environment of Ser28, Phe54, Phe57, Leu59, and Ser64 of KCNE1 in both POPC/POPG vesicles and LMPG micelles. Spin-labeled KCNE1 cysteine mutants at Phe54, Phe57, Leu59, and Ser64 were found to be located inside POPC/POPG vesicles, whereas Ser28 was found to be located outside the membrane. Ser64 was shown to be water inaccessible in vesicles but found to be water accessible in LMPG micelle solutions. These results suggest that key components of the micelle-derived structure of KCNE1 extend to the structure of this protein in lipid bilayers but also demonstrate the need to refine this structure using data derived from the bilayer-reconstituted protein to more accurately define its native structure. This work establishes the basis for such future studies.


Asunto(s)
Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Membrana Celular/química , Membrana Celular/metabolismo , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Liposomas/química , Liposomas/metabolismo , Micelas , Microinyecciones , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oocitos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidilgliceroles/química , Fosfatidilgliceroles/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...