Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clim Change ; 166(3-4)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34912130

RESUMEN

Environmental health indicators are helpful for tracking and communicating complex health trends, informing science and policy decisions, and evaluating public health actions. When provided on a national scale, they can help inform the general public, policy makers, and public health professionals about important trends in exposures and how well public health systems are preventing those exposures from causing adverse health outcomes. There is a growing need to understand national trends in exposures and health outcomes associated with climate change and the effectiveness of climate adaptation strategies for health. To date, most indicators for health implications of climate change have been designed as independent, individual metrics. This approach fails to take into account how exposure-outcome pathways for climate-attributable health outcomes involve multiple, interconnected components. We propose reframing climate change and health indicators as a linked system of indicators, which can be described as follows: upstream climate drivers affect environmental states, which then determine human exposures, which ultimately lead to health outcomes; these climate-related risks are modified by population vulnerabilities and adaptation strategies. We apply this new conceptual framework to three illustrative climate-sensitive health outcomes and associated exposure-outcome pathways: pollen allergies and asthma, West Nile Virus infection, and vibriosis.

3.
Front Public Health ; 8: 578463, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178663

RESUMEN

The Gulf of Mexico (GoM) region is prone to disasters, including recurrent oil spills, hurricanes, floods, industrial accidents, harmful algal blooms, and the current COVID-19 pandemic. The GoM and other regions of the U.S. lack sufficient baseline health information to identify, attribute, mitigate, and facilitate prevention of major health effects of disasters. Developing capacity to assess adverse human health consequences of future disasters requires establishment of a comprehensive, sustained community health observing system, similar to the extensive and well-established environmental observing systems. We propose a system that combines six levels of health data domains, beginning with three existing, national surveys and studies plus three new nested, longitudinal cohort studies. The latter are the unique and most important parts of the system and are focused on the coastal regions of the five GoM States. A statistically representative sample of participants is proposed for the new cohort studies, stratified to ensure proportional inclusion of urban and rural populations and with additional recruitment as necessary to enroll participants from particularly vulnerable or under-represented groups. Secondary data sources such as syndromic surveillance systems, electronic health records, national community surveys, environmental exposure databases, social media, and remote sensing will inform and augment the collection of primary data. Primary data sources will include participant-provided information via questionnaires, clinical measures of mental and physical health, acquisition of biological specimens, and wearable health monitoring devices. A suite of biomarkers may be derived from biological specimens for use in health assessments, including calculation of allostatic load, a measure of cumulative stress. The framework also addresses data management and sharing, participant retention, and system governance. The observing system is designed to continue indefinitely to ensure that essential pre-, during-, and post-disaster health data are collected and maintained. It could also provide a model/vehicle for effective health observation related to infectious disease pandemics such as COVID-19. To our knowledge, there is no comprehensive, disaster-focused health observing system such as the one proposed here currently in existence or planned elsewhere. Significant strengths of the GoM Community Health Observing System (CHOS) are its longitudinal cohorts and ability to adapt rapidly as needs arise and new technologies develop.


Asunto(s)
COVID-19 , Desastres , Golfo de México , Humanos , Estudios Longitudinales , Pandemias , Salud Pública , SARS-CoV-2
5.
Int J Biometeorol ; 63(3): 405-427, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30710251

RESUMEN

Exertional heat illness (EHI) risk is a serious concern among athletes, laborers, and warfighters. US Governing organizations have established various activity modification guidelines (AMGs) and other risk mitigation plans to help ensure the health and safety of their workers. The extent of metabolic heat production and heat gain that ensue from their work are the core reasons for EHI in the aforementioned population. Therefore, the major focus of AMGs in all settings is to modulate the work intensity and duration with additional modification in adjustable extrinsic risk factors (e.g., clothing, equipment) and intrinsic risk factors (e.g., heat acclimatization, fitness, hydration status). Future studies should continue to integrate more physiological (e.g., valid body fluid balance, internal body temperature) and biometeorological factors (e.g., cumulative heat stress) to the existing heat risk assessment models to reduce the assumptions and limitations in them. Future interagency collaboration to advance heat mitigation plans among physically active population is desired to maximize the existing resources and data to facilitate advancement in AMGs for environmental heat.


Asunto(s)
Ejercicio Físico , Trastornos de Estrés por Calor/prevención & control , Calor , Aclimatación , Atletas , Guías como Asunto , Humanos , Personal Militar , Salud Laboral , Estados Unidos
6.
Curr Environ Health Rep ; 5(4): 430-438, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30350265

RESUMEN

PURPOSE OF REVIEW: Weather and climate influence multiple aspects of infectious disease ecology. Creating and applying early warning systems based on temperature, precipitation, and other environmental data can identify where and when outbreaks of climate-sensitive infectious diseases could occur and can be used by decision makers to allocate resources. Whether an outbreak actually occurs depends heavily on other social, political, and institutional factors. RECENT FINDINGS: Improving the timing and confidence of seasonal climate forecasting, coupled with knowledge of exposure-response relationships, can identify prior conditions conducive to disease outbreaks weeks to months in advance of outbreaks. This information could then be used by public health professionals to improve surveillance in the most likely areas for threats. Early warning systems are well established for drought and famine. And while weather- and climate-driven early warning systems for certain diseases, such as dengue fever and cholera, are employed in some regions, this area of research is underdeveloped. Early warning systems based on temperature, precipitation, and other environmental data provide an opportunity for early detection leading to early action and response to potential pathogen threats, thereby reducing the burden of disease when compared with passive health indicator-based surveillance systems.


Asunto(s)
Clima , Control de Enfermedades Transmisibles/métodos , Enfermedades Transmisibles/epidemiología , Salud Pública/tendencias , Tiempo (Meteorología) , Dengue/epidemiología , Brotes de Enfermedades/prevención & control , Predicción , Humanos , Densidad de Población
7.
Microb Ecol ; 65(4): 880-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23435826

RESUMEN

We review recent history and evolution of Oceans and Human Health programs and related activities in the USA from a perspective within the Federal government. As a result of about a decade of support by the US Congress and through a few Federal agencies, notably the National Science Foundation, National Institute of Environmental Health Sciences, and National Ocean and Atmospheric Administration, robust Oceans and Human Health (OHH) research and application activities are now relatively widespread, although still small, in a number of agencies and academic institutions. OHH themes and issues have been incorporated into comprehensive federal ocean research plans and are reflected in the new National Ocean Policy enunciated by Executive Order 13547. In just a decade, OHH has matured into a recognized "metadiscipline," with development of a small, but robust and diverse community of science and practice, incorporation into academic educational programs, regular participation in ocean and coastal science and public health societies, and active engagement with public health decision makers. In addition to substantial increases in scientific information, the OHH community has demonstrated ability to respond rapidly and effectively to emergency situations such as those associated with extreme weather events (e.g., hurricanes, floods) and human-caused disasters (e.g., the Deep Water Horizon oil spill). Among many other things, next steps include development and implementation of agency health strategies and provision of specific services, such as ecological forecasts to provide routine early warnings for ocean health threats and opportunities for prevention and mitigation of these risks.


Asunto(s)
Evolución Biológica , Biología Marina/historia , Administración en Salud Pública/historia , Salud Pública/historia , Agua de Mar/microbiología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Biología Marina/educación , Biología Marina/organización & administración , Salud Pública/educación , Estados Unidos , Recursos Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...