Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Astrobiology ; 24(S1): S40-S56, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498820

RESUMEN

The question "What is life?" has existed since the beginning of recorded history. However, the scientific and philosophical contexts of this question have changed and been refined as advancements in technology have revealed both fine details and broad connections in the network of life on Earth. Understanding the framework of the question "What is life?" is central to formulating other questions such as "Where else could life be?" and "How do we search for life elsewhere?" While many of these questions are addressed throughout the Astrobiology Primer 3.0, this chapter gives historical context for defining life, highlights conceptual characteristics shared by all life on Earth as well as key features used to describe it, discusses why it matters for astrobiology, and explores both challenges and opportunities for finding an informative operational definition.


Asunto(s)
Planeta Tierra , Exobiología , Proyectos de Investigación
2.
Astrobiology ; 24(S1): S164-S185, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498822

RESUMEN

The search for life beyond Earth necessitates a rigorous and comprehensive examination of biosignatures, the types of observable imprints that life produces. These imprints and our ability to detect them with advanced instrumentation hold the key to our understanding of the presence and abundance of life in the universe. Biosignatures are the chemical or physical features associated with past or present life and may include the distribution of elements and molecules, alone or in combination, as well as changes in structural components or physical processes that would be distinct from an abiotic background. The scientific and technical strategies used to search for life on other planets include those that can be conducted in situ to planetary bodies and those that could be observed remotely. This chapter discusses numerous strategies that can be employed to look for biosignatures directly on other planetary bodies using robotic exploration including those that have been deployed to other planetary bodies, are currently being developed for flight, or will become a critical technology on future missions. Search strategies for remote observations using current and planned ground-based and space-based telescopes are also described. Evidence from spectral absorption, emission, or transmission features can be used to search for remote biosignatures and technosignatures. Improving our understanding of biosignatures, their production, transformation, and preservation on Earth can enhance our search efforts to detect life on other planets.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planetas , Planeta Tierra
3.
Astrobiology ; 24(S1): S107-S123, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498818

RESUMEN

All organisms living on Earth descended from a single, common ancestral population of cells, known as LUCA-the last universal common ancestor. Since its emergence, the diversity and complexity of life have increased dramatically. This chapter focuses on four key biological innovations throughout Earth's history that had a significant impact on the expansion of phylogenetic diversity, organismal complexity, and ecospace habitation. First is the emergence of the last universal common ancestor, LUCA, which laid the foundation for all life-forms on Earth. Second is the evolution of oxygenic photosynthesis, which resulted in global geochemical and biological transformations. Third is the appearance of a new type of cell-the eukaryotic cell-which led to the origin of a new domain of life and the basis for complex multicellularity. Fourth is the multiple independent origins of multicellularity, resulting in the emergence of a new level of complex individuality. A discussion of these four key events will improve our understanding of the intertwined history of our planet and its inhabitants and better inform the extent to which we can expect life at different degrees of diversity and complexity elsewhere.


Asunto(s)
Evolución Biológica , Planeta Tierra , Filogenia , Oxígeno , Fotosíntesis
4.
Int J Astrobiol ; 22(4): 247-271, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38046673

RESUMEN

Viruses are the most numerically abundant biological entities on Earth. As ubiquitous replicators of molecular information and agents of community change, viruses have potent effects on the life on Earth, and may play a critical role in human spaceflight, for life-detection missions to other planetary bodies and planetary protection. However, major knowledge gaps constrain our understanding of the Earth's virosphere: (1) the role viruses play in biogeochemical cycles, (2) the origin(s) of viruses and (3) the involvement of viruses in the evolution, distribution and persistence of life. As viruses are the only replicators that span all known types of nucleic acids, an expanded experimental and theoretical toolbox built for Earth's viruses will be pivotal for detecting and understanding life on Earth and beyond. Only by filling in these knowledge and technical gaps we will obtain an inclusive assessment of how to distinguish and detect life on other planetary surfaces. Meanwhile, space exploration requires life-support systems for the needs of humans, plants and their microbial inhabitants. Viral effects on microbes and plants are essential for Earth's biosphere and human health, but virus-host interactions in spaceflight are poorly understood. Viral relationships with their hosts respond to environmental changes in complex ways which are difficult to predict by extrapolating from Earth-based proxies. These relationships should be studied in space to fully understand how spaceflight will modulate viral impacts on human health and life-support systems, including microbiomes. In this review, we address key questions that must be examined to incorporate viruses into Earth system models, life-support systems and life detection. Tackling these questions will benefit our efforts to develop planetary protection protocols and further our understanding of viruses in astrobiology.

5.
Virus Res ; 331: 199121, 2023 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-37086855

RESUMEN

Soil viral ecology is a growing research field; however, the state of knowledge still lags behind that of aquatic systems. Therefore, to facilitate progress, the first Soil Viral Workshop was held to encourage international scientific discussion and collaboration, suggest guidelines for future research, and establish soil viral research as a concrete research area. The workshop took place at Søminestationen, Denmark, between 15 and 17th of June 2022. The meeting was primarily held in person, but the sessions were also streamed online. The workshop was attended by 23 researchers from ten different countries and from a wide range of subfields and career stages. Eleven talks were presented, followed by discussions revolving around three major topics: viral genomics, virus-host interactions, and viruses in the soil food web. The main take-home messages and suggestions from the discussions are summarized in this report.


Asunto(s)
Virus , Humanos , Ecología , Cadena Alimentaria , Genoma Viral
6.
Front Bioinform ; 2: 866850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304297

RESUMEN

The mobilome of a microbe, i.e., its set of mobile elements, has major effects on its ecology, and is important to delineate properly in each genome. This becomes more challenging for incomplete genomes, and even more so for metagenome-assembled genomes (MAGs), where misbinning of scaffolds and other losses can occur. Genomic islands (GIs), which integrate into the host chromosome, are a major component of the mobilome. Our GI-detection software TIGER, unique in its precise mapping of GI termini, was applied to 74,561 genomes from 2,473 microbial species, each species containing at least one MAG and one isolate genome. A species-normalized deficit of ∼1.6 GIs/genome was measured for MAGs relative to isolates. To test whether this undercount was due to the higher fragmentation of MAG genomes, TIGER was updated to enable detection of split GIs whose termini are on separate scaffolds or that wrap around the origin of a circular replicon. This doubled GI yields, and the new split GIs matched the quality of single-scaffold GIs, except that highly fragmented GIs may lack central portions. Cross-scaffold search is an important upgrade to GI detection as fragmented genomes increasingly dominate public databases. TIGER2 better captures MAG microdiversity, recovering niche-defining GIs and supporting microbiome research aims such as virus-host linking and ecological assessment.

9.
Microbiome ; 9(1): 233, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836550

RESUMEN

BACKGROUND: Peatlands are expected to experience sustained yet fluctuating higher temperatures due to climate change, leading to increased microbial activity and greenhouse gas emissions. Despite mounting evidence for viral contributions to these processes in peatlands underlain with permafrost, little is known about viruses in other peatlands. More generally, soil viral biogeography and its potential drivers are poorly understood at both local and global scales. Here, 87 metagenomes and five viral size-fraction metagenomes (viromes) from a boreal peatland in northern Minnesota (the SPRUCE whole-ecosystem warming experiment and surrounding bog) were analyzed for dsDNA viral community ecological patterns, and the recovered viral populations (vOTUs) were compared with our curated PIGEON database of 266,125 vOTUs from diverse ecosystems. RESULTS: Within the SPRUCE experiment, viral community composition was significantly correlated with peat depth, water content, and carbon chemistry, including CH4 and CO2 concentrations, but not with temperature during the first 2 years of warming treatments. Peat vOTUs with aquatic-like signatures (shared predicted protein content with marine and/or freshwater vOTUs) were significantly enriched in more waterlogged surface peat depths. Predicted host ranges for SPRUCE vOTUs were relatively narrow, generally within a single bacterial genus. Of the 4326 SPRUCE vOTUs, 164 were previously detected in other soils, mostly peatlands. None of the previously identified 202,371 marine and freshwater vOTUs in our PIGEON database were detected in SPRUCE peat, but 0.4% of 80,714 viral clusters (VCs, grouped by predicted protein content) were shared between soil and aquatic environments. On a per-sample basis, vOTU recovery was 32 times higher from viromes compared with total metagenomes. CONCLUSIONS: Results suggest strong viral "species" boundaries between terrestrial and aquatic ecosystems and to some extent between peat and other soils, with differences less pronounced at higher taxonomic levels. The significant enrichment of aquatic-like vOTUs in more waterlogged peat suggests that viruses may also exhibit niche partitioning on more local scales. These patterns are presumably driven in part by host ecology, consistent with the predicted narrow host ranges. Although more samples and increased sequencing depth improved vOTU recovery from total metagenomes, the substantially higher per-sample vOTU recovery after viral particle enrichment highlights the utility of soil viromics. Video abstract The importance of Minnesota peat viromes in revealing terrestrial and aquatic niche partitioning for viral populations.


Asunto(s)
Ecosistema , Suelo , Minnesota , Suelo/química , Microbiología del Suelo , Viroma
10.
Microbiome ; 9(1): 208, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663463

RESUMEN

BACKGROUND: Winter carbon loss in northern ecosystems is estimated to be greater than the average growing season carbon uptake and is primarily driven by microbial decomposers. Viruses modulate microbial carbon cycling via induced mortality and metabolic controls, but it is unknown whether viruses are active under winter conditions (anoxic and sub-freezing temperatures). RESULTS: We used stable isotope probing (SIP) targeted metagenomics to reveal the genomic potential of active soil microbial populations under simulated winter conditions, with an emphasis on viruses and virus-host dynamics. Arctic peat soils from the Bonanza Creek Long-Term Ecological Research site in Alaska were incubated under sub-freezing anoxic conditions with H218O or natural abundance water for 184 and 370 days. We sequenced 23 SIP-metagenomes and measured carbon dioxide (CO2) efflux throughout the experiment. We identified 46 bacterial populations (spanning 9 phyla) and 243 viral populations that actively took up 18O in soil and respired CO2 throughout the incubation. Active bacterial populations represented only a small portion of the detected microbial community and were capable of fermentation and organic matter degradation. In contrast, active viral populations represented a large portion of the detected viral community and one third were linked to active bacterial populations. We identified 86 auxiliary metabolic genes and other environmentally relevant genes. The majority of these genes were carried by active viral populations and had diverse functions such as carbon utilization and scavenging that could provide their host with a fitness advantage for utilizing much-needed carbon sources or acquiring essential nutrients. CONCLUSIONS: Overall, there was a stark difference in the identity and function of the active bacterial and viral community compared to the unlabeled community that would have been overlooked with a non-targeted standard metagenomic analysis. Our results illustrate that substantial active virus-host interactions occur in sub-freezing anoxic conditions and highlight viruses as a major community-structuring agent that likely modulates carbon loss in peat soils during winter, which may be pivotal for understanding the future fate of arctic soils' vast carbon stocks. Video abstract.


Asunto(s)
Microbiota , Suelo , Congelación , Microbiología del Suelo , Temperatura
11.
Annu Rev Virol ; 8(1): 133-158, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34033501

RESUMEN

Viral metagenomics has expanded our knowledge of the ecology of uncultured viruses, within both environmental (e.g., terrestrial and aquatic) and host-associated (e.g., plants and animals, including humans) contexts. Here, we emphasize the implementation of an ecological framework in viral metagenomic studies to address questions in virology rarely considered ecological, which can change our perception of viruses and how they interact with their surroundings. An ecological framework explicitly considers diverse variants of viruses in populations that make up communities of interacting viruses, with ecosystem-level effects. It provides a structure for the study of the diversity, distributions, dynamics, and interactions of viruses with one another, hosts, and the ecosystem, including interactions with abiotic factors. An ecological framework in viral metagenomics stands poised to broadly expand our knowledge in basic and applied virology. We highlight specific fundamental research needs to capitalize on its potential and advance the field.


Asunto(s)
Metagenómica , Virus , Animales , Ecosistema , Genoma Viral , Humanos , Metagenoma , Plantas , Virus/genética
12.
Curr Opin Biotechnol ; 67: 184-191, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33592536

RESUMEN

Ability to directly sequence DNA from the environment permanently changed microbial ecology. Here, we review the new insights to microbial life gleaned from the applications of metagenomics, as well as the extensive set of analytical tools that facilitate exploration of diversity and function of complex microbial communities. While metagenomics is shaping our understanding of microbial functions in ecosystems via gene-centric and genome-centric methods, annotating functions, metagenome assembly and binning in heterogeneous samples remains challenging. Development of new analysis and sequencing platforms generating high-throughput long-read sequences and functional screening opportunities will aid in harnessing metagenomes to increase our understanding of microbial taxonomy, function, ecology, and evolution in the environment.


Asunto(s)
Metagenómica , Microbiota , Ecología , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenoma/genética , Microbiota/genética , Análisis de Secuencia de ADN
13.
Phage (New Rochelle) ; 2(1): 11-15, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36148434

RESUMEN

Virus-like particle (VLP) is a term that has been in use for about 80 years. Usually, VLP has meant a particle that is like a virus, generally by appearance, but without either proven or actual virus functionality. Initially VLP referred to particles seen in electron microscope images of tissues. More recently, VLP has come to mean other things to other researchers. A key divergence has been use of VLP in association with vaccine and biotechnology applications versus use of VLP in enumeration of viruses in environmental samples. To these viral ecologists, a VLP is a particle that is virus sized, has nucleic acid, and could be a functional virus. But to vaccine developers and biotechnology researchers a VLP instead is a viral structure that intentionally lacks a viral genome. In this study, we look at the history of use of VLP, following changes in meaning as the technology to study VLPs changed.

14.
mBio ; 10(6)2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848272

RESUMEN

Biological soil crusts (biocrusts) are photosynthetic "hot spots" in deserts and cover ∼12% of the Earth's terrestrial surface, and yet they face an uncertain future given expected shifts in rainfall events. Laboratory wetting of biocrust communities is known to cause a bloom of Firmicutes which rapidly become dominant community members within 2 days after emerging from a sporulated state. We hypothesized that their bacteriophages (phages) would respond to such a dramatic increase in their host's abundance. In our experiment, wetting caused Firmicutes to bloom and triggered a significant depletion of cyanobacterial diversity. We used genome-resolved metagenomics to link phage to their hosts and found that the bloom of the genus Bacillus correlated with a dramatic increase in the number of Caudovirales phages targeting these diverse spore-formers (r = 0.762). After 2 days, we observed dramatic reductions in the relative abundances of Bacillus, while the number of Bacillus phages continued to increase, suggestive of a predator-prey relationship. We found predicted auxiliary metabolic genes (AMGs) associated with sporulation in several Caudovirales genomes, suggesting that phages may influence and even benefit from sporulation dynamics in biocrusts. Prophage elements and CRISPR-Cas repeats in Firmicutes metagenome-assembled genomes (MAGs) provide evidence of recent infection events by phages, which were corroborated by mapping viral contigs to their host MAGs. Combined, these findings suggest that the blooming Firmicutes become primary targets for biocrust Caudovirales phages, consistent with the classical "kill-the-winner" hypothesis.IMPORTANCE This work forms part of an overarching research theme studying the effects of a changing climate on biological soil crust (biocrust) in the Southwestern United States. To our knowledge, this study was the first to characterize bacteriophages in biocrust and offers a view into the ecology of phages in response to a laboratory wetting experiment. The phages identified here represent lineages of Caudovirales, and we found that the dynamics of their interactions with their Firmicutes hosts explain the collapse of a bacterial bloom that was induced by wetting. Moreover, we show that phages carried host-altering metabolic genes and found evidence of proviral infection and CRISPR-Cas repeats within host genomes. Our results suggest that phages exert controls on population density by lysing dominant bacterial hosts and that they further impact biocrust by acquiring host genes for sporulation. Future research should explore how dominant these phages are in other biocrust communities and quantify how much the control and lysis of blooming populations contributes to nutrient cycling in biocrusts.


Asunto(s)
Bacteriófagos , Clima Desértico , Fotosíntesis , Microbiología del Suelo , Bacillus/fisiología , Bacillus/virología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biología Computacional/métodos , Ecosistema , Firmicutes/genética , Firmicutes/metabolismo , Firmicutes/virología , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Metagenoma , Metagenómica/métodos , Filogenia , Relación Estructura-Actividad
15.
PeerJ ; 7: e7265, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31309007

RESUMEN

Soils impact global carbon cycling and their resident microbes are critical to their biogeochemical processing and ecosystem outputs. Based on studies in marine systems, viruses infecting soil microbes likely modulate host activities via mortality, horizontal gene transfer, and metabolic control. However, their roles remain largely unexplored due to technical challenges with separating, isolating, and extracting DNA from viruses in soils. Some of these challenges have been overcome by using whole genome amplification methods and while these have allowed insights into the identities of soil viruses and their genomes, their inherit biases have prevented meaningful ecological interpretations. Here we experimentally optimized steps for generating quantitatively-amplified viral metagenomes to better capture both ssDNA and dsDNA viruses across three distinct soil habitats along a permafrost thaw gradient. First, we assessed differing DNA extraction methods (PowerSoil, Wizard mini columns, and cetyl trimethylammonium bromide) for quantity and quality of viral DNA. This established PowerSoil as best for yield and quality of DNA from our samples, though ∼1/3 of the viral populations captured by each extraction kit were unique, suggesting appreciable differential biases among DNA extraction kits. Second, we evaluated the impact of purifying viral particles after resuspension (by cesium chloride gradients; CsCl) and of viral lysis method (heat vs bead-beating) on the resultant viromes. DNA yields after CsCl particle-purification were largely non-detectable, while unpurified samples yielded 1-2-fold more DNA after lysis by heat than by bead-beating. Virome quality was assessed by the number and size of metagenome-assembled viral contigs, which showed no increase after CsCl-purification, but did from heat lysis relative to bead-beating. We also evaluated sample preparation protocols for ssDNA virus recovery. In both CsCl-purified and non-purified samples, ssDNA viruses were successfully recovered by using the Accel-NGS 1S Plus Library Kit. While ssDNA viruses were identified in all three soil types, none were identified in the samples that used bead-beating, suggesting this lysis method may impact recovery. Further, 13 ssDNA vOTUs were identified compared to 582 dsDNA vOTUs, and the ssDNA vOTUs only accounted for ∼4% of the assembled reads, implying dsDNA viruses were dominant in these samples. This optimized approach was combined with the previously published viral resuspension protocol into a sample-to-virome protocol for soils now available at protocols.io, where community feedback creates 'living' protocols. This collective approach will be particularly valuable given the high physicochemical variability of soils, which will may require considerable soil type-specific optimization. This optimized protocol provides a starting place for developing quantitatively-amplified viromic datasets and will help enable viral ecogenomic studies on organic-rich soils.

16.
PeerJ ; 7: e6902, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31119088

RESUMEN

BACKGROUND: Metagenomics has transformed our understanding of microbial diversity across ecosystems, with recent advances enabling de novo assembly of genomes from metagenomes. These metagenome-assembled genomes are critical to provide ecological, evolutionary, and metabolic context for all the microbes and viruses yet to be cultivated. Metagenomes can now be generated from nanogram to subnanogram amounts of DNA. However, these libraries require several rounds of PCR amplification before sequencing, and recent data suggest these typically yield smaller and more fragmented assemblies than regular metagenomes. METHODS: Here we evaluate de novo assembly methods of 169 PCR-amplified metagenomes, including 25 for which an unamplified counterpart is available, to optimize specific assembly approaches for PCR-amplified libraries. We first evaluated coverage bias by mapping reads from PCR-amplified metagenomes onto reference contigs obtained from unamplified metagenomes of the same samples. Then, we compared different assembly pipelines in terms of assembly size (number of bp in contigs ≥ 10 kb) and error rates to evaluate which are the best suited for PCR-amplified metagenomes. RESULTS: Read mapping analyses revealed that the depth of coverage within individual genomes is significantly more uneven in PCR-amplified datasets versus unamplified metagenomes, with regions of high depth of coverage enriched in short inserts. This enrichment scales with the number of PCR cycles performed, and is presumably due to preferential amplification of short inserts. Standard assembly pipelines are confounded by this type of coverage unevenness, so we evaluated other assembly options to mitigate these issues. We found that a pipeline combining read deduplication and an assembly algorithm originally designed to recover genomes from libraries generated after whole genome amplification (single-cell SPAdes) frequently improved assembly of contigs ≥10 kb by 10 to 100-fold for low input metagenomes. CONCLUSIONS: PCR-amplified metagenomes have enabled scientists to explore communities traditionally challenging to describe, including some with extremely low biomass or from which DNA is particularly difficult to extract. Here we show that a modified assembly pipeline can lead to an improved de novo genome assembly from PCR-amplified datasets, and enables a better genome recovery from low input metagenomes.

17.
mSystems ; 3(5)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30320215

RESUMEN

Rapidly thawing permafrost harbors ∼30 to 50% of global soil carbon, and the fate of this carbon remains unknown. Microorganisms will play a central role in its fate, and their viruses could modulate that impact via induced mortality and metabolic controls. Because of the challenges of recovering viruses from soils, little is known about soil viruses or their role(s) in microbial biogeochemical cycling. Here, we describe 53 viral populations (viral operational taxonomic units [vOTUs]) recovered from seven quantitatively derived (i.e., not multiple-displacement-amplified) viral-particle metagenomes (viromes) along a permafrost thaw gradient at the Stordalen Mire field site in northern Sweden. Only 15% of these vOTUs had genetic similarity to publicly available viruses in the RefSeq database, and ∼30% of the genes could be annotated, supporting the concept of soils as reservoirs of substantial undescribed viral genetic diversity. The vOTUs exhibited distinct ecology, with different distributions along the thaw gradient habitats, and a shift from soil-virus-like assemblages in the dry palsas to aquatic-virus-like assemblages in the inundated fen. Seventeen vOTUs were linked to microbial hosts (in silico), implicating viruses in infecting abundant microbial lineages from Acidobacteria, Verrucomicrobia, and Deltaproteobacteria, including those encoding key biogeochemical functions such as organic matter degradation. Thirty auxiliary metabolic genes (AMGs) were identified and suggested virus-mediated modulation of central carbon metabolism, soil organic matter degradation, polysaccharide binding, and regulation of sporulation. Together, these findings suggest that these soil viruses have distinct ecology, impact host-mediated biogeochemistry, and likely impact ecosystem function in the rapidly changing Arctic. IMPORTANCE This work is part of a 10-year project to examine thawing permafrost peatlands and is the first virome-particle-based approach to characterize viruses in these systems. This method yielded >2-fold-more viral populations (vOTUs) per gigabase of metagenome than vOTUs derived from bulk-soil metagenomes from the same site (J. B. Emerson, S. Roux, J. R. Brum, B. Bolduc, et al., Nat Microbiol 3:870-880, 2018, https://doi.org/10.1038/s41564-018-0190-y). We compared the ecology of the recovered vOTUs along a permafrost thaw gradient and found (i) habitat specificity, (ii) a shift in viral community identity from soil-like to aquatic-like viruses, (iii) infection of dominant microbial hosts, and (iv) carriage of host metabolic genes. These vOTUs can impact ecosystem carbon processing via top-down (inferred from lysing dominant microbial hosts) and bottom-up (inferred from carriage of auxiliary metabolic genes) controls. This work serves as a foundation which future studies can build upon to increase our understanding of the soil virosphere and how viruses affect soil ecosystem services.

18.
Nat Microbiol ; 3(8): 870-880, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013236

RESUMEN

Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood1-7. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans8-10, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling.


Asunto(s)
Carbono/metabolismo , Perfilación de la Expresión Génica/métodos , Hielos Perennes/virología , Virus/clasificación , Bacterias/virología , Ciclo del Carbono , Cambio Climático , Ecosistema , Genoma Viral , Glicósido Hidrolasas/genética , Especificidad del Huésped , Filogenia , Microbiología del Suelo , Suecia , Proteínas Virales/genética , Virus/genética , Virus/metabolismo
19.
PeerJ ; 4: e1999, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27231649

RESUMEN

Permafrost stores approximately 50% of global soil carbon (C) in a frozen form; it is thawing rapidly under climate change, and little is known about viral communities in these soils or their roles in C cycling. In permafrost soils, microorganisms contribute significantly to C cycling, and characterizing them has recently been shown to improve prediction of ecosystem function. In other ecosystems, viruses have broad ecosystem and community impacts ranging from host cell mortality and organic matter cycling to horizontal gene transfer and reprogramming of core microbial metabolisms. Here we developed an optimized protocol to extract viruses from three types of high organic-matter peatland soils across a permafrost thaw gradient (palsa, moss-dominated bog, and sedge-dominated fen). Three separate experiments were used to evaluate the impact of chemical buffers, physical dispersion, storage conditions, and concentration and purification methods on viral yields. The most successful protocol, amended potassium citrate buffer with bead-beating or vortexing and BSA, yielded on average as much as 2-fold more virus-like particles (VLPs) g(-1) of soil than other methods tested. All method combinations yielded VLPs g(-1) of soil on the 10(8) order of magnitude across all three soil types. The different storage and concentration methods did not yield significantly more VLPs g(-1) of soil among the soil types. This research provides much-needed guidelines for resuspending viruses from soils, specifically carbon-rich soils, paving the way for incorporating viruses into soil ecology studies.

20.
Proc Natl Acad Sci U S A ; 113(9): 2436-41, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26884177

RESUMEN

Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter.


Asunto(s)
Proteómica , Proteínas Estructurales Virales/química , Biología Marina , Virus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...