Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys J ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38796698

RESUMEN

hERG potassium channels are critical for cardiac excitability. hERG channels have a Per-Arnt-Sim (PAS) domain at their N-terminus, and here, we examined the mechanism for PAS domain regulation of channel opening and closing (gating). We used TAG codon suppression to incorporate the noncanonical amino acid 4-benzoyl-L-phenylalanine (BZF), which is capable of forming covalent cross-links after photoactivation by ultraviolet (UV) light, at three locations (G47, F48, and E50) in the PAS domain. We found that hERG-G47BZF channels had faster closing (deactivation) when irradiated in the open state (at 0 mV) but showed no measurable changes when irradiated in the closed state (at -100 mV). hERG-F48BZF channels had slower activation, faster deactivation, and a marked rightward shift in the voltage dependence of activation when irradiated in the open (at 0 mV) or closed (at -100 mV) state. hERG-E50BZF channels had no measurable changes when irradiated in the open state (at 0 mV) but had slower activation, faster deactivation, and a rightward shift in the voltage dependence of activation when irradiated in the closed state (at -100mV), indicating that hERG-E50BZF had a state-dependent difference in UV photoactivation, which we interpret to mean that PAS underwent molecular motions between the open and closed states. Moreover, we propose that UV-dependent biophysical changes in hERG-G47BZF, F48BZF, and E50BZF were the direct result of photochemical cross-linking that reduced dynamic motions in the PAS domain and broadly stabilized the closed state relative to the open state of the channel.

2.
Biophys J ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475996
3.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260338

RESUMEN

Human ether-à-go-go related gene (hERG) voltage-activated potassium channels are critical for cardiac excitability. Characteristic slow closing (deactivation) in hERG is regulated by direct interaction between the N-terminal Per-Arnt-Sim (PAS) domain and the C-terminal cyclic nucleotide binding homology domain (CNBHD). We aim to understand how the PAS domain that is distal to the pore rearranges during gating to allosterically regulate the channel pore (and ion flux). To achieve this, we utilized the non-canonical amino acid 4-Benzoyl-L-phenylalanine (BZF) which is a photo-activatable cross-linkable probe, that when irradiated with ultraviolet (U.V.) light forms a double radical capable of forming covalent cross-links with C-H bond-containing groups, enabling selective and potent U.V.-driven photoinactivation of ion channel dynamics. Here we incorporate BZF directly into the hERG potassium channel PAS domain at three locations (G47, F48, and E50) using TAG codon suppression technology. hERG channels with BZF incorporated into the PAS domain (hERG-BZF) showed a significant change in the biophysical properties of the channel. hERG-G47BZF activated slowly when irradiated in the closed state (-100mV) but deactivated quickly when irradiated in both the open (0mV) and closed state. hERG-F48BZF channels showed a state independent and U.V. dose-dependent change in channel activation (slowing down) and channel deactivation (speeding up), as well as a marked change (right-shift) in the voltage-dependence of conductance. When irradiated at -100 mV hERG-E50BZF showed a state dependent and U.V. dose-dependent change in a channel activation (slowing down) and deactivation (speeding up) of channel deactivation, as well as a marked change (right-shift) in the voltage-dependence of conductance that occurred only when the channel was irradiated in the closed state (-100mV). This approach demonstrated that direct photo-crosslinking of the PAS domain in hERG channels causes a measurable change in biophysical parameters and more broadly stabilized the closed state of the channel. We propose that altered channel gating is as a direct result of reduced dynamic motions in the PAS domain of hERG due to photo-chemical crosslinking.

4.
J Biol Chem ; 298(9): 102233, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35798139

RESUMEN

A major physiological role of hERG1 (human Ether-á-go-go-Related Gene 1) potassium channels is to repolarize cardiac action potentials. Two isoforms, hERG1a and hERG1b, associate to form the potassium current IKr in cardiomyocytes. Inherited mutations in hERG1a or hERG1b cause prolonged cardiac repolarization, long QT syndrome, and sudden death arrhythmia. hERG1a subunits assemble with and enhance the number of hERG1b subunits at the plasma membrane, but the mechanism for the increase in hERG1b by hERG1a is not well understood. Here, we report that the hERG1a N-terminal region expressed in trans with hERG1b markedly increased hERG1b currents and increased biotin-labeled hERG1b protein at the membrane surface. hERG1b channels with a deletion of the N-terminal 1b domain did not have a measurable increase in current or biotinylated protein when coexpressed with hERG1a N-terminal regions, indicating that the 1b domain was required for the increase in hERG1b. Using a biochemical pull-down interaction assay and a FRET hybridization experiment, we detected a direct interaction between the hERG1a N-terminal region and the hERG1b N-terminal region. Using engineered deletions and alanine mutagenesis, we identified a short span of amino acids at positions 216 to 220 within the hERG1a "N-linker" region that were necessary for the upregulation of hERG1b. We propose that direct structural interactions between the hERG1a N-linker region and the hERG1b 1b domain increase hERG1b at the plasma membrane. Mechanisms regulating hERG1a and hERG1b are likely critical for cardiac function, may be disrupted by long QT syndrome mutants, and serve as potential targets for therapeutics.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Síndrome de QT Prolongado , Alanina/química , Alanina/genética , Biotina/química , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Mutagénesis , Dominios Proteicos , Regulación hacia Arriba
5.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716268

RESUMEN

The human ERG (hERG) K+ channel has a crucial function in cardiac repolarization, and mutations or channel block can give rise to long QT syndrome and catastrophic ventricular arrhythmias. The cytosolic assembly formed by the Per-Arnt-Sim (PAS) and cyclic nucleotide binding homology (CNBh) domains is the defining structural feature of hERG and related KCNH channels. However, the molecular role of these two domains in channel gating remains unclear. We have previously shown that single-chain variable fragment (scFv) antibodies can modulate hERG function by binding to the PAS domain. Here, we mapped the scFv2.12 epitope to a site overlapping with the PAS/CNBh domain interface using NMR spectroscopy and mutagenesis and show that scFv binding in vitro and in the cell is incompatible with the PAS interaction with CNBh. By generating a fluorescently labeled scFv2.12, we demonstrate that association with the full-length hERG channel is state dependent. We detect Förster resonance energy transfer (FRET) with scFv2.12 when the channel gate is open but not when it is closed. In addition, state dependence of scFv2.12 FRET signal disappears when the R56Q mutation, known to destabilize the PAS-CNBh interaction, is introduced in the channel. Altogether, these data are consistent with an extensive structural alteration of the PAS/CNBh assembly when the cytosolic gate opens, likely favoring PAS domain dissociation from the CNBh domain.


Asunto(s)
Canal de Potasio ERG1/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Citosol/metabolismo , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/inmunología , Canales de Potasio Éter-A-Go-Go/inmunología , Canales de Potasio Éter-A-Go-Go/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Activación del Canal Iónico , Síndrome de QT Prolongado/genética , Conformación Molecular , Mutación , Conformación Proteica , Dominios Proteicos/genética , Dominios Proteicos/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Relación Estructura-Actividad
6.
Channels (Austin) ; 14(1): 294-309, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32924766

RESUMEN

The KCNH family comprises the ERG, EAG, and ELK voltage-activated, potassium-selective channels. Distinct from other K channels, KCNH channels contain unique structural domains, including a PAS (Per-Arnt-Sim) domain in the N-terminal region and a CNBHD (cyclic nucleotide-binding homology domain) in the C-terminal region. The intracellular PAS domains and CNBHDs interact directly and regulate some of the characteristic gating properties of each type of KCNH channel. The PAS-CNBHD interaction regulates slow closing (deactivation) of hERG channels, the kinetics of activation and pre-pulse dependent population of closed states (the Cole-Moore shift) in EAG channels and voltage-dependent potentiation in ELK channels. KCNH channels are all regulated by an intrinsic ligand motif in the C-terminal region which binds to the CNBHD. Here, we focus on some recent advances regarding the PAS-CNBHD interaction and the intrinsic ligand.


Asunto(s)
Espacio Intracelular/metabolismo , Activación del Canal Iónico , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Humanos , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
8.
J Gen Physiol ; 151(4): 478-488, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30425124

RESUMEN

Human ether-à-go-go-related gene (hERG, KCNH2) voltage-activated potassium channels are critical for cardiac excitability. hERG channels have characteristic slow closing (deactivation), which is auto-regulated by a direct interaction between the N-terminal Per-Arnt-Sim (PAS) domain and the C-terminal cyclic nucleotide binding homology domain (CNBHD). hERG channels are not activated by the binding of extrinsic cyclic nucleotide ligands, but rather bind an "intrinsic ligand" that is composed of residues 860-862 within the CNBHD and mimics a cyclic nucleotide. The intrinsic ligand is located at the PAS-CNBHD interface, but its mechanism of action in hERG is not well understood. Here we use whole-cell patch-clamp electrophysiology and FRET spectroscopy to examine how the intrinsic ligand regulates gating. To carry out this work, we coexpress PAS (a PAS domain fused to cyan fluorescent protein) in trans with hERG "core" channels (channels with a deletion of the PAS domain fused to citrine fluorescent protein). The PAS domain in trans with hERG core channels has slow (regulated) deactivation, like that of WT hERG channels, as well as robust FRET, which indicates there is a direct functional and structural interaction of the PAS domain with the channel core. In contrast, PAS in trans with hERG F860A core channels has intermediate deactivation and intermediate FRET, indicating perturbation of the PAS domain interaction with the CNBHD. Furthermore, PAS in trans with hERG L862A core channels, or PAS in trans with hERG F860G,L862G core channels, has fast (nonregulated) deactivation and no measurable FRET, indicating abolition of the PAS and CNBHD interaction. These results indicate that the intrinsic ligand is necessary for the functional and structural interaction between the PAS domain and the CNBHD, which regulates the characteristic slow deactivation gating in hERG channels.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Fenómenos Electrofisiológicos , Células HEK293 , Humanos , Activación del Canal Iónico/fisiología , Técnicas de Placa-Clamp , Mutación Puntual
9.
J Cell Sci ; 131(6)2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29507111

RESUMEN

Reduced levels of the cardiac human (h)ERG ion channel protein and the corresponding repolarizing current IKr can cause arrhythmia and sudden cardiac death, but the underlying cellular mechanisms controlling hERG surface expression are not well understood. Here, we identified TRIOBP-1, an F-actin-binding protein previously associated with actin polymerization, as a putative hERG-interacting protein in a yeast-two hybrid screen of a cardiac library. We corroborated this interaction by performing Förster resonance energy transfer (FRET) in HEK293 cells and co-immunoprecipitation in HEK293 cells and native cardiac tissue. TRIOBP-1 overexpression reduced hERG surface expression and current density, whereas reducing TRIOBP-1 expression via shRNA knockdown resulted in increased hERG protein levels. Immunolabeling in rat cardiomyocytes showed that native TRIOBP-1 colocalized predominantly with myosin-binding protein C and secondarily with rat ERG. In human stem cell-derived cardiomyocytes, TRIOBP-1 overexpression caused intracellular co-sequestration of hERG signal, reduced native IKr and disrupted action potential repolarization. Ca2+ currents were also somewhat reduced and cell capacitance was increased. These findings establish that TRIOBP-1 interacts directly with hERG and can affect protein levels, IKr magnitude and cardiac membrane excitability.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Calcio/metabolismo , Células HEK293 , Humanos , Masculino , Proteínas de Microfilamentos/genética , Unión Proteica , Transporte de Proteínas , Ratas , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismo
10.
J Biol Chem ; 292(52): 21548-21557, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29089383

RESUMEN

Voltage-activated human ether-á-go-go-related gene (hERG) potassium channels are critical for the repolarization of cardiac action potentials and tune-spike frequency adaptation in neurons. Two isoforms of mammalian ERG1 channel subunits, ERG1a and ERG1b, are the principal subunits that conduct the IKr current in the heart and are also broadly expressed in the nervous system. However, there is little direct evidence that ERG1a and ERG1b form heteromeric channels. Here, using electrophysiology, biochemistry, and fluorescence approaches, we systematically tested for direct interactions between hERG1a and hERG1b subunits. We report 1) that hERG1a dominant-negative subunits suppress hERG1b currents (and vice versa), 2) that disulfide bonds form between single cysteine residues experimentally introduced into an extracellular loop of hERG1a and hERG1b subunits and produce hERG1a-hERG1b dimers, and 3) that hERG1a and hERG1b subunits tagged with fluorescent proteins that are FRET pairs exhibit robust energy transfer at the plasma membrane. Thus, multiple lines of evidence indicated a physical interaction between hERG1a and hERG1b, consistent with them forming heteromeric channels. Moreover, co-expression of variable ratios of hERG1a and hERG1b RNA yielded channels with deactivation kinetics that reached a plateau and were different from those of hERG1b channels, consistent with a preference of hERG1b subunits for hERG1a subunits. Cross-linking studies revealed that an equal input of hERG1a and hERG1b yields more hERG1a-hERG1a or hERG1a-hERG1b dimers than hERG1b-hERG1b dimers, also suggesting that hERG1b preferentially interacts with hERG1a. We conclude that hERG1b preferentially forms heteromeric ion channels with hERG1a at the plasma membrane.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/fisiología , Canal de Potasio ERG1/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Corazón/fisiología , Humanos , Activación del Canal Iónico , Síndrome de QT Prolongado/metabolismo , Miocardio/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Isoformas de Proteínas , Subunidades de Proteína
11.
PLoS One ; 10(4): e0123951, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25923442

RESUMEN

Human Ether á go-go Related Gene potassium channels form the rapid component of the delayed-rectifier (IKr) current in the heart. The N-terminal 'eag' domain, which is composed of a Per-Arnt-Sim (PAS) domain and a short PAS-cap region, is a critical regulator of hERG channel function. In previous studies, we showed that isolated eag (i-eag) domains rescued the dysfunction of long QT type-2 associated mutant hERG R56Q channels, by substituting for defective eag domains, when the channels were expressed in Xenopus oocytes or HEK 293 cells.Here, our goal was to determine whether the rescue of hERG R56Q channels by i-eag domains could be translated into the environment of cardiac myocytes. We expressed hERG R56Q channels in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and measured electrical properties of the cells with whole-cell patch-clamp recordings. We found that, like in non-myocyte cells, hERG R56Q had defective, fast closing (deactivation) kinetics when expressed in hiPSC-CMs. We report here that i-eag domains slowed the deactivation kinetics of hERG R56Q channels in hiPSC-CMs. hERG R56Q channels prolonged the AP of hiPSCs, and the AP was shortened by co-expression of i-eag domains and hERG R56Q channels. We measured robust Förster Resonance Energy Transfer (FRET) between i-eag domains tagged with Cyan fluorescent protein (CFP) and hERG R56Q channels tagged with Citrine fluorescent proteins (Citrine), indicating their close proximity at the cell membrane in live iPSC-CMs. Together, functional regulation and FRET spectroscopy measurements indicated that i-eag domains interacted directly with hERG R56Q channels in hiPSC-CMs. These results mean that the regulatory role of i-eag domains is conserved in the cellular environment of human cardiomyocytes, indicating that i-eag domains may be useful as a biological therapeutic.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Células Madre Pluripotentes Inducidas/citología , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/metabolismo , Mutación Puntual , Animales , Línea Celular , Células Cultivadas , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/metabolismo , Células HEK293 , Humanos , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/citología , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína
12.
Proc Natl Acad Sci U S A ; 111(50): 18073-7, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453103

RESUMEN

The human ether-à-go-go-related gene (hERG; or KCNH2) encodes the voltage-gated potassium channel underlying IKr, a repolarizing current in the heart. Mutations in KCNH2 or pharmacological agents that reduce IKr slow action potential (AP) repolarization and can trigger cardiac arrhythmias associated with long QT syndrome. Two channel-forming subunits encoded by KCNH2 (hERG 1a and 1b) are expressed in cardiac tissue. In heterologous expression systems, these subunits avidly coassemble and exhibit biophysical and pharmacological properties distinct from those of homomeric hERG 1a channels. Despite these findings, adoption of hERG 1a/1b heteromeric channels as a model for cardiac IKr has been hampered by the lack of evidence for a direct functional role for the 1b subunit in native tissue. In this study, we measured IKr and APs at physiological temperature in cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CMs). We found that specific knockdown of the 1b subunit using shRNA caused reductions in 1b mRNA, 1b protein levels, and IKr magnitude by roughly one-half. AP duration was increased and AP variability was enhanced relative to controls. Early afterdepolarizations, considered cellular substrates for arrhythmia, were also observed in cells with reduced 1b expression. Similar behavior was elicited when channels were effectively converted from heteromers to 1a homomers by expressing a fragment corresponding to the 1a-specific N-terminal Per-Arnt-Sim domain, which is omitted from hERG 1b by alternate transcription. These findings establish that hERG 1b is critical for normal repolarization and that loss of 1b is proarrhythmic in human cardiac cells.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Potenciales de la Membrana/fisiología , Miocitos Cardíacos/fisiología , Función Ventricular/fisiología , Potenciales de Acción/fisiología , Análisis de Varianza , Polaridad Celular/fisiología , Canal de Potasio ERG1 , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
J Gen Physiol ; 142(4): 351-66, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24043860

RESUMEN

Human ether-á-go-go (eag)-related gene (hERG) potassium channels play a critical role in cardiac repolarization and are characterized by unusually slow closing (deactivation) kinetics. The N-terminal "eag" domain and a C-terminal C-linker/cyclic nucleotide-binding homology domain (CNBHD) are required for regulation of slow deactivation. The region between the S4 and S5 transmembrane domains (S4-S5 linker) is also implicated in this process, but the mechanism for regulation of slow deactivation is unclear. Here, using an eag domain-deleted channel (hERG Δeag) fused to Citrine fluorescent protein, we found that most channels bearing individual alanine mutations in the S4-S5 linker were directly regulated by recombinant eag domains fused to a cyan fluorescent protein (N-eag-CFP) and had robust Förster resonance energy transfer (FRET). Additionally, a channel bearing a group of eight alanine residues in the S4-S5 linker was not measurably regulated by N-eag-CFP domains, but robust FRET was measured. These findings demonstrate that the eag domain associated with all of the S4-S5 linker mutant channels. In contrast, channels that also lacked the CNBHD (hERG Δeag ΔCNBHD-Citrine) were not measurably regulated by N-eag-CFP nor was FRET detected, suggesting that the C-linker/CNBHD was required for eag domains to directly associate with the channel. In a FRET hybridization assay, N-eag-CFP had robust FRET with a C-linker/CNBHD-Citrine, suggesting a direct and specific interaction between the eag domain and the C-linker/CNBHD. Lastly, coexpression of a hERG subunit lacking the CNBHD and the distal C-terminal region (hERG ΔpCT-Citrine) with hERG Δeag-CFP subunits had FRET and partial restoration of slow deactivation. Collectively, these findings reveal that the C-linker/CNBHD, but not the S4-S5 linker, was necessary for the eag domain to associate with the channel, that the eag domain and the C-linker/CNBHD were sufficient for a direct interaction, and that an intersubunit interaction between the eag domain and the C-linker/CNBHD regulated slow deactivation in hERG channels at the plasma membrane.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Activación del Canal Iónico , Nucleótidos Cíclicos/metabolismo , Homología de Secuencia de Aminoácido , Sitios de Unión , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Mutación , Estructura Terciaria de Proteína
14.
Proc Natl Acad Sci U S A ; 110(28): 11648-53, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23801759

RESUMEN

The human ether-à-go-go-related gene (hERG) encodes a K(+) channel crucial for repolarization of the cardiac action potential. EAG-related gene (ERG) channels contain a C-terminal cyclic nucleotide-binding homology domain coupled to the pore of the channel by a C-linker. Here, we report the structure of the C-linker/cyclic nucleotide-binding homology domain of a mosquito ERG channel at 2.5-Å resolution. The structure reveals that the region expected to form the cyclic nucleotide-binding pocket is negatively charged and is occupied by a short ß-strand, referred to as the intrinsic ligand, explaining the lack of direct regulation of ERG channels by cyclic nucleotides. In hERG channels, the intrinsic ligand harbors hereditary mutations associated with long-QT syndrome (LQTS), a potentially lethal cardiac arrhythmia. Mutations in the intrinsic ligand affected hERG channel gating and LQTS mutations abolished hERG currents and altered trafficking of hERG channels, which explains the LQT phenotype. The structure also reveals a dramatically different conformation of the C-linker compared with the structures of the related ether-à-go-go-like K(+) and hyperpolarization-activated cyclic nucleotide-modulated channels, suggesting that the C-linker region may be highly dynamic in the KCNH, hyperpolarization-activated cyclic nucleotide-modulated, and cyclic nucleotide-gated channels.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/fisiología , Potenciales de Acción , Animales , Anopheles , Canales de Potasio Éter-A-Go-Go/genética , Modelos Moleculares , Mutación , Conformación Proteica
15.
J Gen Physiol ; 141(2): 229-41, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23319729

RESUMEN

Human ether-á-go-go (eag)-related gene (hERG) potassium channel kinetics are characterized by rapid inactivation upon depolarization, along with rapid recovery from inactivation and very slow closing (deactivation) upon repolarization. These factors combine to create a resurgent hERG current, where the current amplitude is paradoxically larger with repolarization than with depolarization. Previous data showed that the hERG N-terminal eag domain regulated deactivation kinetics by making a direct interaction with the C-terminal region of the channel. A primary mechanism for fast inactivation depends on residues in the channel pore; however, inactivation was also shown to be slower after deletion of a large N-terminal region. The mechanism for N-terminal region regulation of inactivation is unclear. Here, we investigated the contributions of the large N-terminal domains (amino acids 1-354), including the eag domain (amino acids 1-135), to hERG channel inactivation kinetics and steady-state inactivation properties. We found that N-deleted channels lacking just the eag domain (Δ2-135) or both the eag domain and the adjacent proximal domain (Δ2-354) had less rectifying current-voltage (I-V) relationships, slower inactivation, faster recovery from inactivation, and lessened steady-state inactivation. We coexpressed genetically encoded N-terminal fragments for the eag domain (N1-135) or the eag domain plus the proximal domain (N1-354) with N-deleted hERG Δ2-135 or hERG Δ2-354 channels and found that the resulting channels had more rectifying I-V relationships, faster inactivation, slower recovery from inactivation, and increased steady-state inactivation, similar to those properties measured for wild-type (WT) hERG. We also found that the eag domain-containing fragments regulated the time to peak and the voltage at the peak of a resurgent current elicited with a ramp voltage protocol. The eag domain-containing fragments effectively converted N-deleted channels into WT-like channels. Neither the addition of the proximal domain to the eag domain in N1-354 fragments nor the presence of the proximal domain in hERG Δ2-135 channels measurably affected inactivation properties; in contrast, the proximal region regulated steady-state activation in hERG Δ2-135 channels. The results show that N-terminal region-dependent regulation of channel inactivation and resurgent current properties are caused by a direct interaction of the eag domain with the rest of the hERG channel.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/metabolismo , Activación del Canal Iónico/fisiología , Oocitos/química , Oocitos/fisiología , Animales , Células Cultivadas , Canal de Potasio ERG1 , Membranas Artificiales , Estructura Terciaria de Proteína , Xenopus laevis
17.
Cell Signal ; 24(8): 1592-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22522181

RESUMEN

Human ether-á-go-go related gene (hERG, K(v)11.1) potassium channels play a significant role in cardiac excitability. Like other K(v) channels, hERG is activated by membrane voltage; however, distinct from other K(v) channels, hERG channels have unusually slow kinetics of closing (deactivation). The mechanism for slow deactivation involves an N-terminal "eag domain" which comprises a PAS (Per-Arnt-Sim) domain and a short Cap domain. Here we review recent advances in understanding how the eag domain regulates deactivation, including several new Nuclear Magnetic Resonance (NMR) solution structures of the eag domain, and evidence showing that the eag domain makes a direct interaction with the C-terminal C-linker and Cyclic Nucleotide-Binding Homology Domain.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Dominios y Motivos de Interacción de Proteínas , Sitios de Unión , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares
18.
J Gen Physiol ; 138(6): 581-92, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22124116

RESUMEN

Human ether-á-go-go-related gene (hERG) potassium channels are critical for cardiac action potential repolarization. Cardiac hERG channels comprise two primary isoforms: hERG1a, which has a regulatory N-terminal Per-Arnt-Sim (PAS) domain, and hERG1b, which does not. Isolated, PAS-containing hERG1a N-terminal regions (NTRs) directly regulate NTR-deleted hERG1a channels; however, it is unclear whether hERG1b isoforms contain sufficient machinery to support regulation by hERG1a NTRs. To test this, we constructed a series of PAS domain-containing hERG1a NTRs (encoding amino acids 1-181, 1-228, 1-319, and 1-365). The NTRs were also predicted to form from truncation mutations that were linked to type 2 long QT syndrome (LQTS), a cardiac arrhythmia disorder associated with mutations in the hERG gene. All of the hERG1a NTRs markedly regulated heteromeric hERG1a/hERG1b channels and homomeric hERG1b channels by decreasing the magnitude of the current-voltage relationship and slowing the kinetics of channel closing (deactivation). In contrast, NTRs did not measurably regulate hERG1a channels. A short NTR (encoding amino acids 1-135) composed primarily of the PAS domain was sufficient to regulate hERG1b. These results suggest that isolated hERG1a NTRs directly interact with hERG1b subunits. Our results demonstrate that deactivation is faster in hERG1a/hERG1b channels compared to hERG1a channels because of fewer PAS domains, not because of an inhibitory effect of the unique hERG1b NTR. A decrease in outward current density of hERG1a/hERG1b channels by hERG1a NTRs may be a mechanism for LQTS.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Síndrome de QT Prolongado/metabolismo , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Activación del Canal Iónico/genética , Síndrome de QT Prolongado/genética , Péptidos/química , Péptidos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transfección
19.
J Biol Chem ; 286(25): 22160-9, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21536673

RESUMEN

Congenital long QT syndrome 2 (LQT2) is caused by loss-of-function mutations in the human ether-á-go-go-related gene (hERG) voltage-gated potassium (K(+)) channel. hERG channels have slow deactivation kinetics that are regulated by an N-terminal Per-Arnt-Sim (PAS) domain. Only a small percentage of hERG channels containing PAS domain LQT2 mutations (hERG PAS-LQT2) have been characterized in mammalian cells, so the functional effect of these mutations is unclear. We investigated 11 hERG PAS-LQT2 channels in HEK293 cells and report a diversity of functional defects. Most hERG PAS-LQT2 channels formed functional channels at the plasma membrane, as measured by whole cell patch clamp recordings and cell surface biotinylation. Mutations located on one face of the PAS domain (K28E, F29L, N33T, R56Q, and M124R) caused defective channel gating, including faster deactivation kinetics and less steady-state inactivation. Conversely, the other mutations caused no measurable differences in channel gating (G53R, H70R, and A78P) or no measurable currents (Y43C, C66G, and L86R). We used a genetically encoded hERG PAS domain (NPAS) to examine whether channel dysfunction could be corrected. We found that NPAS fully restored wild-type-like deactivation kinetics and steady-state inactivation to the hERG PAS-LQT2 channels. Additionally, NPAS rescued aberrant currents in hERG R56Q channels during a dynamic ramp voltage clamp. Thus, our results reveal a putative "gating face" in the PAS domain where mutations within this region form functional channels with altered gating properties, and we show that NPAS is a general means for rescuing aberrant gating in hERG LQT2 mutant channels and may be a potential biological therapeutic.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/metabolismo , Activación del Canal Iónico/genética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Mutación , Animales , Conductividad Eléctrica , Canales de Potasio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína/genética
20.
J Gen Physiol ; 137(3): 315-25, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21357734

RESUMEN

Human ether-á-go-go-related gene (hERG) potassium channels have voltage-dependent closing (deactivation) kinetics that are unusually slow. A Per-Arnt-Sim (PAS) domain in the cytoplasmic N-terminal region of hERG regulates slow deactivation by making a direct interaction with another part of the hERG channel. The mechanism for slow deactivation is unclear, however, because the other regions of the channel that participate in regulation of deactivation are not known. To identify other functional determinants of slow deactivation, we generated hERG channels with deletions of the cytoplasmic C-terminal regions. We report that hERG channels with deletions of the cyclic nucleotide-binding domain (CNBD) had accelerated deactivation kinetics that were similar to those seen in hERG channels lacking the PAS domain. Channels with dual deletions of the PAS domain and the CNBD did not show further acceleration in deactivation, indicating that the PAS domain and the CNBD regulate deactivation by a convergent mechanism. A recombinant PAS domain that we previously showed could directly regulate PAS domain-deleted channels did not regulate channels with dual deletions of the PAS domain and CNBD, suggesting that the PAS domain did not interact with CNBD-deleted channels. Biochemical protein interaction assays showed that glutathione S-transferase (GST)-PAS (but not GST) bound to a CNBD-containing fusion protein. Coexpression of PAS domain-deleted subunits (with intact C-terminal regions) and CNBD-deleted subunits (with intact N-terminal regions) resulted in channels with partially restored slow deactivation kinetics, suggesting regulatory intersubunit interactions between PAS domains and CNBDs. Together, these data suggest that the mechanism for regulation of slow deactivation in hERG channels is an interaction between the N-terminal PAS domain and the C-terminal CNBD.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Activación del Canal Iónico , Potasio/metabolismo , Animales , Sitios de Unión , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Humanos , Cinética , Potenciales de la Membrana , Mutación , Nucleótidos Cíclicos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...