Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948859

RESUMEN

Understanding how animals coordinate movements to achieve goals is a fundamental pursuit in neuroscience. Here we explore how neurons that reside in posterior lower-order regions of a locomotor system project to anterior higher-order regions to influence steering and navigation. We characterized the anatomy and functional role of a population of ascending interneurons in the ventral nerve cord of Drosophila larvae. Through electron microscopy reconstructions and light microscopy, we determined that the cholinergic 19f cells receive input primarily from premotor interneurons and synapse upon a diverse array of postsynaptic targets within the anterior segments including other 19f cells. Calcium imaging of 19f activity in isolated central nervous system (CNS) preparations in relation to motor neurons revealed that 19f neurons are recruited into most larval motor programmes. 19f activity lags behind motor neuron activity and as a population, the cells encode spatio-temporal patterns of locomotor activity in the larval CNS. Optogenetic manipulations of 19f cell activity in isolated CNS preparations revealed that they coordinate the activity of central pattern generators underlying exploratory headsweeps and forward locomotion in a context and location specific manner. In behaving animals, activating 19f cells suppressed exploratory headsweeps and slowed forward locomotion, while inhibition of 19f activity potentiated headsweeps, slowing forward movement. Inhibiting activity in 19f cells ultimately affected the ability of larvae to remain in the vicinity of an odor source during an olfactory navigation task. Overall, our findings provide insights into how ascending interneurons monitor motor activity and shape interactions amongst rhythm generators underlying complex navigational tasks.

2.
Elife ; 122024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568859

RESUMEN

To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.


Asunto(s)
Hormonas Juveniles , Metamorfosis Biológica , Animales , Metamorfosis Biológica/fisiología , Insectos , Morfogénesis
3.
bioRxiv ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37873170

RESUMEN

To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.

4.
Genetics ; 223(3)2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36645270

RESUMEN

During postembryonic life, hormones, including ecdysteroids, juvenile hormones, insulin-like peptides, and activin/TGFß ligands act to transform the larval nervous system into an adult version, which is a fine-grained mosaic of recycled larval neurons and adult-specific neurons. Hormones provide both instructional signals that make cells competent to undergo developmental change and timing cues to evoke these changes across the nervous system. While touching on all the above hormones, our emphasis is on the ecdysteroids, ecdysone and 20-hydroxyecdysone (20E). These are the prime movers of insect molting and metamorphosis and are involved in all phases of nervous system development, including neurogenesis, pruning, arbor outgrowth, and cell death. Ecdysteroids appear as a series of steroid peaks that coordinate the larval molts and the different phases of metamorphosis. Each peak directs a stereotyped cascade of transcription factor expression. The cascade components then direct temporal programs of effector gene expression, but the latter vary markedly according to tissue and life stage. The neurons read the ecdysteroid titer through various isoforms of the ecdysone receptor, a nuclear hormone receptor. For example, at metamorphosis the pruning of larval neurons is mediated through the B isoforms, which have strong activation functions, whereas subsequent outgrowth is mediated through the A isoform through which ecdysteroids play a permissive role to allow local tissue interactions to direct outgrowth. The major circulating ecdysteroid can also change through development. During adult development ecdysone promotes early adult patterning and differentiation while its metabolite, 20E, later evokes terminal adult differentiation.


Asunto(s)
Drosophila , Ecdisteroides , Animales , Drosophila/genética , Ecdisona , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Metamorfosis Biológica/genética , Sistema Nervioso , Modelos Animales
5.
Elife ; 122023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36695420

RESUMEN

Mushroom bodies (MB) of adult Drosophila have a core of thousands of Kenyon neurons; axons of the early-born g class form a medial lobe and those from later-born α'ß' and αß classes form both medial and vertical lobes. The larva, however, hatches with only γ neurons and forms a vertical lobe 'facsimile' using larval-specific axon branches from its γ neurons. MB input (MBINs) and output (MBONs) neurons divide the Kenyon neuron lobes into discrete computational compartments. The larva has 10 such compartments while the adult has 16. We determined the fates of 28 of the 32 MBONs and MBINs that define the 10 larval compartments. Seven compartments are subsequently incorporated into the adult MB; four of their MBINs die, while 12 MBINs/MBONs remodel to function in adult compartments. The remaining three compartments are larval specific. At metamorphosis their MBIN/MBONs trans-differentiate, leaving the MB for other adult brain circuits. The adult vertical lobes are made de novo using MBONs/MBINs recruited from pools of adult-specific neurons. The combination of cell death, compartment shifting, trans-differentiation, and recruitment of new neurons result in no larval MBIN-MBON connections being maintained through metamorphosis. At this simple level, then, we find no anatomical substrate for a memory trace persisting from larva to adult. The adult phenotype of the trans-differentiating neurons represents their evolutionarily ancestral phenotype while their larval phenotype is a derived adaptation for the larval stage. These cells arise primarily within lineages that also produce permanent MBINs and MBONs, suggesting that larval specifying factors may allow information related to birth-order or sibling identity to be interpreted in a modified manner in the larva to allow these neurons to acquire larval phenotypic modifications. The loss of such factors at metamorphosis then allows these neurons to revert to their ancestral functions in the adult.


Asunto(s)
Drosophila , Neuronas , Animales , Drosophila/fisiología , Larva/fisiología , Neuronas/fisiología , Encéfalo , Axones , Cuerpos Pedunculados/fisiología , Drosophila melanogaster/fisiología , Metamorfosis Biológica
6.
Proc Natl Acad Sci U S A ; 119(15): e2201071119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377802

RESUMEN

The molecular control of insect metamorphosis from larva to pupa to adult has long been a mystery. The Broad and E93 transcription factors, which can modify chromatin domains, are known to direct the production of the pupa and the adult, respectively. We now show that chinmo, a gene related to broad, is essential for the repression of these metamorphic genes. Chinmo is strongly expressed during the formation and growth of the larva and its removal results in the precocious expression of broad and E93 in the first stage larva, causing a shift from larval to premetamorphic functions. This trinity of Chinmo, Broad, and E93 regulatory factors is mutually inhibitory. The interaction of this network with regulatory hormones likely ensures the orderly progression through insect metamorphosis.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Proteínas del Tejido Nervioso , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Larva/genética , Larva/metabolismo , Metamorfosis Biológica/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Pupa/genética , Pupa/metabolismo
7.
Elife ; 102021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34755599

RESUMEN

Animal behavior is shaped both by evolution and by individual experience. Parallel brain pathways encode innate and learned valences of cues, but the way in which they are integrated during action-selection is not well understood. We used electron microscopy to comprehensively map with synaptic resolution all neurons downstream of all mushroom body (MB) output neurons (encoding learned valences) and characterized their patterns of interaction with lateral horn (LH) neurons (encoding innate valences) in Drosophila larva. The connectome revealed multiple convergence neuron types that receive convergent MB and LH inputs. A subset of these receives excitatory input from positive-valence MB and LH pathways and inhibitory input from negative-valence MB pathways. We confirmed functional connectivity from LH and MB pathways and behavioral roles of two of these neurons. These neurons encode integrated odor value and bidirectionally regulate turning. Based on this, we speculate that learning could potentially skew the balance of excitation and inhibition onto these neurons and thereby modulate turning. Together, our study provides insights into the circuits that integrate learned and innate valences to modify behavior.


Asunto(s)
Drosophila melanogaster/fisiología , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Animales , Encéfalo/fisiología , Conectoma , Drosophila melanogaster/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Aprendizaje/fisiología
8.
Elife ; 102021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34085637

RESUMEN

Neuroendocrine systems in animals maintain organismal homeostasis and regulate stress response. Although a great deal of work has been done on the neuropeptides and hormones that are released and act on target organs in the periphery, the synaptic inputs onto these neuroendocrine outputs in the brain are less well understood. Here, we use the transmission electron microscopy reconstruction of a whole central nervous system in the Drosophila larva to elucidate the sensory pathways and the interneurons that provide synaptic input to the neurosecretory cells projecting to the endocrine organs. Predicted by network modeling, we also identify a new carbon dioxide-responsive network that acts on a specific set of neurosecretory cells and that includes those expressing corazonin (Crz) and diuretic hormone 44 (Dh44) neuropeptides. Our analysis reveals a neuronal network architecture for combinatorial action based on sensory and interneuronal pathways that converge onto distinct combinations of neuroendocrine outputs.


Asunto(s)
Conectoma , Drosophila melanogaster/ultraestructura , Interneuronas/ultraestructura , Sistemas Neurosecretores/ultraestructura , Células Receptoras Sensoriales/ultraestructura , Sinapsis/ultraestructura , Animales , Animales Modificados Genéticamente , Dióxido de Carbono/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hormonas de Insectos/genética , Hormonas de Insectos/metabolismo , Interneuronas/metabolismo , Microscopía Electrónica de Transmisión , Neuropéptidos/genética , Neuropéptidos/metabolismo , Sistemas Neurosecretores/metabolismo , Células Receptoras Sensoriales/metabolismo , Sinapsis/metabolismo
9.
Elife ; 102021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33973523

RESUMEN

The mechanisms specifying neuronal diversity are well characterized, yet it remains unclear how or if these mechanisms regulate neural circuit assembly. To address this, we mapped the developmental origin of 160 interneurons from seven bilateral neural progenitors (neuroblasts) and identify them in a synapse-scale TEM reconstruction of the Drosophila larval central nervous system. We find that lineages concurrently build the sensory and motor neuropils by generating sensory and motor hemilineages in a Notch-dependent manner. Neurons in a hemilineage share common synaptic targeting within the neuropil, which is further refined based on neuronal temporal identity. Connectome analysis shows that hemilineage-temporal cohorts share common connectivity. Finally, we show that proximity alone cannot explain the observed connectivity structure, suggesting hemilineage/temporal identity confers an added layer of specificity. Thus, we demonstrate that the mechanisms specifying neuronal diversity also govern circuit formation and function, and that these principles are broadly applicable throughout the nervous system.


Asunto(s)
Sistema Nervioso Central/fisiología , Drosophila melanogaster/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Proteínas de Drosophila/fisiología
10.
Elife ; 92020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33263281

RESUMEN

Proprioception, the sense of self-movement and position, is mediated by mechanosensory neurons that detect diverse features of body kinematics. Although proprioceptive feedback is crucial for accurate motor control, little is known about how downstream circuits transform limb sensory information to guide motor output. Here we investigate neural circuits in Drosophila that process proprioceptive information from the fly leg. We identify three cell types from distinct developmental lineages that are positioned to receive input from proprioceptor subtypes encoding tibia position, movement, and vibration. 13Bα neurons encode femur-tibia joint angle and mediate postural changes in tibia position. 9Aα neurons also drive changes in leg posture, but encode a combination of directional movement, high frequency vibration, and joint angle. Activating 10Bα neurons, which encode tibia vibration at specific joint angles, elicits pausing in walking flies. Altogether, our results reveal that central circuits integrate information across proprioceptor subtypes to construct complex sensorimotor representations that mediate diverse behaviors, including reflexive control of limb posture and detection of leg vibration.


Asunto(s)
Retroalimentación Sensorial/fisiología , Vías Nerviosas/fisiología , Propiocepción/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Fenómenos Biomecánicos , Drosophila melanogaster , Miembro Posterior/inervación , Músculo Esquelético/inervación , Vías Nerviosas/citología , Células Receptoras Sensoriales/citología
11.
Neuron ; 107(6): 1071-1079.e2, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32931755

RESUMEN

Drosophila melanogaster is an established model for neuroscience research with relevance in biology and medicine. Until recently, research on the Drosophila brain was hindered by the lack of a complete and uniform nomenclature. Recognizing this, Ito et al. (2014) produced an authoritative nomenclature for the adult insect brain, using Drosophila as the reference. Here, we extend this nomenclature to the adult thoracic and abdominal neuromeres, the ventral nerve cord (VNC), to provide an anatomical description of this major component of the Drosophila nervous system. The VNC is the locus for the reception and integration of sensory information and involved in generating most of the locomotor actions that underlie fly behaviors. The aim is to create a nomenclature, definitions, and spatial boundaries for the Drosophila VNC that are consistent with other insects. The work establishes an anatomical framework that provides a powerful tool for analyzing the functional organization of the VNC.


Asunto(s)
Drosophila melanogaster/citología , Ganglios de Invertebrados/citología , Red Nerviosa/citología , Neuronas/clasificación , Terminología como Asunto , Animales , Linaje de la Célula , Drosophila melanogaster/fisiología , Ganglios de Invertebrados/fisiología , Red Nerviosa/fisiología , Neuronas/citología , Neuronas/fisiología
12.
Elife ; 92020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32216875

RESUMEN

The Drosophila ventral nerve cord (VNC) is composed of thousands of neurons born from a set of individually identifiable stem cells. The VNC harbors neuronal circuits required to execute key behaviors, such as flying and walking. Leveraging the lineage-based functional organization of the VNC, we investigated the developmental and molecular basis of behavior by focusing on lineage-specific functions of the homeodomain transcription factor, Unc-4. We found that Unc-4 functions in lineage 11A to promote cholinergic neurotransmitter identity and suppress the GABA fate. In lineage 7B, Unc-4 promotes proper neuronal projections to the leg neuropil and a specific flight-related take-off behavior. We also uncovered that Unc-4 acts peripherally to promote proprioceptive sensory organ development and the execution of specific leg-related behaviors. Through time-dependent conditional knock-out of Unc-4, we found that its function is required during development, but not in the adult, to regulate the above events.


Asunto(s)
Encéfalo/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Proteínas de Homeodominio/fisiología , Neuronas/fisiología , Animales , Conducta Animal , Linaje de la Célula , Proteínas de Drosophila/genética , Vuelo Animal , Proteínas de Homeodominio/genética , Neurotransmisores/análisis
13.
Nat Neurosci ; 23(4): 544-555, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32203499

RESUMEN

Dopaminergic neurons (DANs) drive learning across the animal kingdom, but the upstream circuits that regulate their activity and thereby learning remain poorly understood. We provide a synaptic-resolution connectome of the circuitry upstream of all DANs in a learning center, the mushroom body of Drosophila larva. We discover afferent sensory pathways and a large population of neurons that provide feedback from mushroom body output neurons and link distinct memory systems (aversive and appetitive). We combine this with functional studies of DANs and their presynaptic partners and with comprehensive circuit modeling. We find that DANs compare convergent feedback from aversive and appetitive systems, which enables the computation of integrated predictions that may improve future learning. Computational modeling reveals that the discovered feedback motifs increase model flexibility and performance on learning tasks. Our study provides the most detailed view to date of biological circuit motifs that support associative learning.


Asunto(s)
Aprendizaje/fisiología , Memoria/fisiología , Cuerpos Pedunculados/fisiología , Animales , Neuronas Dopaminérgicas/fisiología , Drosophila/fisiología , Larva , Modelos Neurológicos , Vías Nerviosas/fisiología
14.
Curr Biol ; 29(23): R1252-R1268, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31794762

RESUMEN

The evolution of insect metamorphosis is one of the most important sagas in animal history, transforming small, obscure soil arthropods into a dominant terrestrial group that has profoundly shaped the evolution of terrestrial life. The evolution of flight initiated the trajectory towards metamorphosis, favoring enhanced differences between juvenile and adult stages. The initial step modified postembryonic development, resulting in the nymph-adult differences characteristic of hemimetabolous species. The second step was to complete metamorphosis, holometaboly, and occurred by profoundly altering embryogenesis to produce a larval stage, the nymph becoming the pupa to accommodate the deferred development needed to make the adult. These changing life history patterns were intimately linked to two hormonal systems, the ecdysteroids and the juvenile hormones (JH), which function in both embryonic and postembryonic domains and control the stage-specifying genes Krüppel homolog 1 (Kr-h1), broad and E93. The ecdysteroids induce and direct molting through the ecdysone receptor (EcR), a nuclear hormone receptor with numerous targets including a conserved transcription factor network, the 'Ashburner cascade', which translates features of the ecdysteroid peak into the different phases of the molt. With the evolution of metamorphosis, ecdysteroids acquired a metamorphic function that exploited the repressor capacity of the unliganded EcR, making it a hormone-controlled gateway for the tissue development preceding metamorphosis. JH directs ecdysteroid action, controlling Kr-h1 expression which in turn regulates the other stage-specifying genes. JH appears in basal insect groups as their embryos shift from growth and patterning to differentiation. As a major portion of embryogenesis was deferred to postembryonic life with the evolution of holometaboly, JH also acquired a potent role in regulating postembryonic growth and development. Details of its involvement in broad expression and E93 suppression have been modified as life cycles became more complex and likely underlie some of the changes seen in the shift from incomplete to complete metamorphosis.


Asunto(s)
Evolución Biológica , Insectos/crecimiento & desarrollo , Rasgos de la Historia de Vida , Metamorfosis Biológica , Animales
15.
Philos Trans R Soc Lond B Biol Sci ; 374(1783): 20190070, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31438820

RESUMEN

Developmental, genetic and endocrine data from diverse taxa provide insight into the evolution of insect metamorphosis. We equate the larva-pupa-adult of the Holometabola to the pronymph-nymph-adult of hemimetabolous insects. The hemimetabolous pronymph is a cryptic embryonic stage with unique endocrinology and behavioural modifications that probably served as preadaptations for the larva. It develops in the absence of juvenile hormone (JH) as embryonic primordia undergo patterning and morphogenesis, the processes that were arrested for the evolution of the larva. Embryonic JH then drives tissue differentiation and nymph formation. Experimental treatment of pronymphs with JH terminates patterning and induces differentiation, mimicking the processes that occurred during the evolution of the larva. Unpatterned portions of primordia persist in the larva, becoming imaginal discs that form pupal and adult structures. Key transcription factors are associated with the holometabolous life stages: Krüppel-homolog 1 (Kr-h1) in the larva, broad in the pupa and E93 in the adult. Kr-h1 mediates JH action and is found whenever JH acts, while the other two genes direct the formation of their corresponding stages. In hemimetabolous forms, the pronymph has low Broad expression, followed by Broad expression through the nymphal moults, then a switch to E93 to form the adult. This article is part of the theme issue 'The evolution of complete metamorphosis'.


Asunto(s)
Evolución Biológica , Proteínas de Insectos/metabolismo , Insectos/crecimiento & desarrollo , Hormonas Juveniles/metabolismo , Metamorfosis Biológica , Animales , Larva/crecimiento & desarrollo , Ninfa/crecimiento & desarrollo , Pupa/crecimiento & desarrollo
16.
Nat Commun ; 10(1): 2654, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201326

RESUMEN

Animal locomotion requires spatiotemporally coordinated contraction of muscles throughout the body. Here, we investigate how contractions of antagonistic groups of muscles are intersegmentally coordinated during bidirectional crawling of Drosophila larvae. We identify two pairs of higher-order premotor excitatory interneurons present in each abdominal neuromere that intersegmentally provide feedback to the adjacent neuromere during motor propagation. The two feedback neuron pairs are differentially active during either forward or backward locomotion but commonly target a group of premotor interneurons that together provide excitatory inputs to transverse muscles and inhibitory inputs to the antagonistic longitudinal muscles. Inhibition of either feedback neuron pair compromises contraction of transverse muscles in a direction-specific manner. Our results suggest that the intersegmental feedback neurons coordinate contraction of synergistic muscles by acting as delay circuits representing the phase lag between segments. The identified circuit architecture also shows how bidirectional motor networks could be economically embedded in the nervous system.


Asunto(s)
Retroalimentación Fisiológica , Locomoción/fisiología , Red Nerviosa/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Interneuronas/fisiología , Larva/fisiología , Microscopía Electrónica , Modelos Animales , Contracción Muscular/fisiología , Músculos/inervación , Músculos/fisiología , Optogenética
17.
Elife ; 82019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30912745

RESUMEN

The vast majority of the adult fly ventral nerve cord is composed of 34 hemilineages, which are clusters of lineally related neurons. Neurons in these hemilineages use one of the three fast-acting neurotransmitters (acetylcholine, GABA, or glutamate) for communication. We generated a comprehensive neurotransmitter usage map for the entire ventral nerve cord. We did not find any cases of neurons using more than one neurotransmitter, but found that the acetylcholine specific gene ChAT is transcribed in many glutamatergic and GABAergic neurons, but these transcripts typically do not leave the nucleus and are not translated. Importantly, our work uncovered a simple rule: All neurons within a hemilineage use the same neurotransmitter. Thus, neurotransmitter identity is acquired at the stem cell level. Our detailed transmitter- usage/lineage identity map will be a great resource for studying the developmental basis of behavior and deciphering how neuronal circuits function to regulate behavior.


Asunto(s)
Linaje de la Célula/fisiología , Sistema Nervioso Central/citología , Sistema Nervioso Central/crecimiento & desarrollo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Animales , Diferenciación Celular , Drosophila , Células Madre/fisiología
18.
J Comp Neurol ; 527(15): 2573-2598, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30919956

RESUMEN

We have used MARCM to reveal the adult morphology of the post embryonically produced neurons in the thoracic neuromeres of the Drosophila VNS. The work builds on previous studies of the origins of the adult VNS neurons to describe the clonal organization of the adult VNS. We present data for 58 of 66 postembryonic thoracic lineages, excluding the motor neuron producing lineages (15 and 24) which have been described elsewhere. MARCM labels entire lineages but where both A and B hemilineages survive (e.g., lineages 19, 12, 13, 6, 1, 3, 8, and 11), the two hemilineages can be discriminated and we have described each hemilineage separately. Hemilineage morphology is described in relation to the known functional domains of the VNS neuropil and based on the anatomy we are able to assign broad functional roles for each hemilineage. The data show that in a thoracic hemineuromere, 16 hemilineages are primarily involved in controlling leg movements and walking, 9 are involved in the control of wing movements, and 10 interface between both leg and wing control. The data provide a baseline of understanding of the functional organization of the adult Drosophila VNS. By understanding the morphological organization of these neurons, we can begin to define and test the rules by which neuronal circuits are assembled during development and understand the functional logic and evolution of neuronal networks.


Asunto(s)
Sistema Nervioso Central/citología , Drosophila/citología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Neuronas/citología , Animales , Linaje de la Célula
19.
Curr Biol ; 29(4): 554-566.e4, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30744969

RESUMEN

Animals use sensory information to move toward more favorable conditions. Drosophila larvae can move up or down gradients of odors (chemotax), light (phototax), and temperature (thermotax) by modulating the probability, direction, and size of turns based on sensory input. Whether larvae can anemotax in gradients of mechanosensory cues is unknown. Further, although many of the sensory neurons that mediate taxis have been described, the central circuits are not well understood. Here, we used high-throughput, quantitative behavioral assays to demonstrate Drosophila larvae anemotax in gradients of wind speeds and to characterize the behavioral strategies involved. We found that larvae modulate the probability, direction, and size of turns to move away from higher wind speeds. This suggests that similar central decision-making mechanisms underlie taxis in somatosensory and other sensory modalities. By silencing the activity of single or very few neuron types in a behavioral screen, we found two sensory (chordotonal and multidendritic class III) and six nerve cord neuron types involved in anemotaxis. We reconstructed the identified neurons in an electron microscopy volume that spans the entire larval nervous system and found they received direct input from the mechanosensory neurons or from each other. In this way, we identified local interneurons and first- and second-order subesophageal zone (SEZ) and brain projection neurons. Finally, silencing a dopaminergic brain neuron type impairs anemotaxis. These findings suggest that anemotaxis involves both nerve cord and brain circuits. The candidate neurons and circuitry identified in our study provide a basis for future detailed mechanistic understanding of the circuit principles of anemotaxis.


Asunto(s)
Drosophila/fisiología , Taxia/fisiología , Viento , Movimientos del Aire , Animales , Drosophila/crecimiento & desarrollo , Larva/fisiología , Células Receptoras Sensoriales/fisiología
20.
Elife ; 72018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30526854

RESUMEN

We reconstructed, from a whole CNS EM volume, the synaptic map of input and output neurons that underlie food intake behavior of Drosophila larvae. Input neurons originate from enteric, pharyngeal and external sensory organs and converge onto seven distinct sensory synaptic compartments within the CNS. Output neurons consist of feeding motor, serotonergic modulatory and neuroendocrine neurons. Monosynaptic connections from a set of sensory synaptic compartments cover the motor, modulatory and neuroendocrine targets in overlapping domains. Polysynaptic routes are superimposed on top of monosynaptic connections, resulting in divergent sensory paths that converge on common outputs. A completely different set of sensory compartments is connected to the mushroom body calyx. The mushroom body output neurons are connected to interneurons that directly target the feeding output neurons. Our results illustrate a circuit architecture in which monosynaptic and multisynaptic connections from sensory inputs traverse onto output neurons via a series of converging paths.


Asunto(s)
Sistema Nervioso Central/fisiología , Drosophila melanogaster/fisiología , Larva/fisiología , Neuronas Motoras/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Sistema Nervioso Central/ultraestructura , Conectoma/métodos , Drosophila melanogaster/ultraestructura , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Interneuronas/citología , Interneuronas/fisiología , Larva/ultraestructura , Potenciales de la Membrana/fisiología , Neuronas Motoras/citología , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/fisiología , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Plasticidad Neuronal/fisiología , Sinapsis/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA