Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(1)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38258222

RESUMEN

Bottom-gate thin-film transistors (TFTs) with n-type amorphous indium-gallium-zinc oxide (a-IGZO) active channels and indium-tin oxide (ITO) source/drain electrodes were fabricated. Then, an ultraviolet (UV) nanosecond pulsed laser with a wavelength of 355 nm was scanned to locally anneal the active channel at various laser powers. After laser annealing, negative shifts in the threshold voltages and enhanced on-currents were observed at laser powers ranging from 54 to 120 mW. The energy band gap and work function of a-IGZO extracted from the transmittance and ultraviolet photoelectron spectroscopy (UPS) measurement data confirm that different energy band structures for the ITO electrode/a-IGZO channel were established depending on the laser annealing conditions. Based on these observations, the electron injection mechanism from ITO electrodes to a-IGZO channels was analyzed. The results show that the selective laser annealing process can improve the electrical performance of the a-IGZO TFTs without any thermal damage to the substrate.

2.
ACS Nano ; 17(24): 24826-24840, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38060577

RESUMEN

Brain-inspired neuromorphic computing systems, based on a crossbar array of two-terminal multilevel resistive random-access memory (RRAM), have attracted attention as promising technologies for processing large amounts of unstructured data. However, the low reliability and inferior conductance tunability of RRAM, caused by uncontrollable metal filament formation in the uneven switching medium, result in lower accuracy compared to the software neural network (SW-NN). In this work, we present a highly reliable CoOx-based multilevel RRAM with an optimized crystal size and density in the switching medium, providing a three-dimensional (3D) grain boundary (GB) network. This design enhances the reliability of the RRAM by improving the cycle-to-cycle endurance and device-to-device stability of the I-V characteristics with minimal variation. Furthermore, the designed 3D GB-channel RRAM (3D GB-RRAM) exhibits excellent conductance tunability, demonstrating high symmetricity (624), low nonlinearity (ßLTP/ßLTD ∼ 0.20/0.39), and a large dynamic range (Gmax/Gmin ∼ 31.1). The cyclic stability of long-term potentiation and depression also exceeds 100 cycles (105 voltage pulses), and the relative standard deviation of Gmax/Gmin is only 2.9%. Leveraging these superior reliability and performance attributes, we propose a neuromorphic sensory system for finger motion tracking and hand gesture recognition as a potential elemental technology for the metaverse. This system consists of a stretchable double-layered photoacoustic strain sensor and a crossbar array neural network. We perform training and recognition tasks on ultrasonic patterns associated with finger motion and hand gestures, attaining a recognition accuracy of 97.9% and 97.4%, comparable to that of SW-NN (99.8% and 98.7%).


Asunto(s)
Encéfalo , Gestos , Reproducibilidad de los Resultados , Citoesqueleto , Potenciación a Largo Plazo
3.
Exploration (Beijing) ; 3(1): 20210232, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37323622

RESUMEN

Coronavirus disease 2019 (COVID-19) pandemic has exemplified how viral growth and transmission are a significant threat to global biosecurity. The early detection and treatment of viral infections is the top priority to prevent fresh waves and control the pandemic. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified through several conventional molecular methodologies that are time-consuming and require high-skill labor, apparatus, and biochemical reagents but have a low detection accuracy. These bottlenecks hamper conventional methods from resolving the COVID-19 emergency. However, interdisciplinary advances in nanomaterials and biotechnology, such as nanomaterials-based biosensors, have opened new avenues for rapid and ultrasensitive detection of pathogens in the field of healthcare. Many updated nanomaterials-based biosensors, namely electrochemical, field-effect transistor, plasmonic, and colorimetric biosensors, employ nucleic acid and antigen-antibody interactions for SARS-CoV-2 detection in a highly efficient, reliable, sensitive, and rapid manner. This systematic review summarizes the mechanisms and characteristics of nanomaterials-based biosensors for SARS-CoV-2 detection. Moreover, continuing challenges and emerging trends in biosensor development are also discussed.

4.
Environ Res ; 206: 112631, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973199

RESUMEN

TiO2 is a well-known semiconductor used widely in the photocatalyst field, but its photocatalytic applications are hampered by a fast electron-hole recombination rate and low visible light absorption due to a wide-band-gap energy. Herein, we present a simple, low cost, and green approach to obtain carbon dots from microalgae, namely microalgae-based carbon dots (MCDs), using an unprecedented microwave-assisted treatment. The MCDs were successfully decorated on the surface of TiO2 nanoparticles. The as-prepared composite exhibited a superior photodegradation of methylene blue, compared with pristine TiO2 (83% and 27%, respectively) under visible light irradiation. The MCDs in TiO2-MCDs serve as electron reservoirs to trap photoinduced electrons and as photosensitizers for the improvement of visible light absorption; both factors play an important role in the improvement of the TiO2 photocatalytic activity. Furthermore, the as-prepared composite photocatalyst also exhibits high photostability and recyclability during the photodegradation of methylene blue. Therefore, this work provides an original approach to the development of environmentally friendly and highly effective photocatalysts for the treatment of various organic pollutants, which can go a long way toward ensuring a safe and sustainable environment.


Asunto(s)
Microalgas , Nanopartículas , Carbono , Catálisis , Fotólisis , Titanio
5.
ACS Nanosci Au ; 2(2): 64-92, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37101661

RESUMEN

Metal-oxide nanomaterials (MONs) have gained considerable interest in the construction of flexible/wearable sensors due to their tunable band gap, low cost, large specific area, and ease of manufacturing. Furthermore, MONs are in high demand for applications, such as gas leakage alarms, environmental protection, health tracking, and smart devices integrated with another system. In this Review, we introduce a comprehensive investigation of factors to boost the sensitivity of MON-based sensors in environmental indicators and health monitoring. Finally, the challenges and perspectives of MON-based flexible/wearable sensors are considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...