Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Medicine (Baltimore) ; 103(14): e37679, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38579083

RESUMEN

Malnutrition is a common problem among hemodialysis patients that increases morbidity and mortality and decreases the quality of life. This study aimed to assess the prevalence of malnutrition and associated factors and survey the consumption of energy and several nutrients among hemodialysis patients. A prospective observational study with a cross-sectional design was conducted on 76 patients on hemodialysis therapy at Nguyen Tri Phuong Hospital, Ho Chi Minh City, Vietnam, for 2 months (from May to July 2022). Dialysis malnutrition score was used to determine patients' nutritional status. Data about their biochemical parameters were retrieved from records with the newest results. Among the 76 patients, 38 (50.0%) were female. The mean age of the patients was 55.0 ±â€…13.5 years. Based on the dialysis malnutrition score, 56 (73.7%) patients had mild to moderate malnutrition, while 2 (2.6%) had severe malnutrition. The average energy intake was 21.5 kcal/kg/day, with only 3.9% meeting the recommended intake. The average protein intake was 1.0 g/kg/day, and about 10.5% of participants complied with the recommended protein level. In addition, the majority of patients did not reach the recommendations for sodium (56.6%), potassium (88.2%), phosphate (75.0%), and calcium (82.9%). We found a significant association between patients' occupation (P < .05), dialysis vintage (P < .001), and malnutrition status. Malnutrition is widespread among Vietnamese hemodialysis patients, which necessitates regular assessment and monitoring. We recommend paying more attention to the nutritional status of patients who are unemployed, retired, or stopped working and those with ≥ 5 years of hemodialysis.


Asunto(s)
Desnutrición , Diálisis Renal , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Masculino , Estudios Transversales , Diálisis Renal/efectos adversos , Vietnam/epidemiología , Prevalencia , Calidad de Vida , Evaluación Nutricional , Desnutrición/epidemiología , Desnutrición/etiología , Estado Nutricional
2.
Small ; 19(9): e2204946, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36538749

RESUMEN

Flexible and implantable electronics hold tremendous promises for advanced healthcare applications, especially for physiological neural recording and modulations. Key requirements in neural interfaces include miniature dimensions for spatial physiological mapping and low impedance for recognizing small biopotential signals. Herein, a bottom-up mesoporous formation technique and a top-down microlithography process are integrated to create flexible and low-impedance mesoporous gold (Au) electrodes for biosensing and bioimplant applications. The mesoporous architectures developed on a thin and soft polymeric substrate provide excellent mechanical flexibility and stable electrical characteristics capable of sustaining multiple bending cycles. The large surface areas formed within the mesoporous network allow for high current density transfer in standard electrolytes, highly suitable for biological sensing applications as demonstrated in glucose sensors with an excellent detection limit of 1.95 µm and high sensitivity of 6.1 mA cm-2  µM-1 , which is approximately six times higher than that of benchmarking flat/non-porous films. The low impedance of less than 1 kΩ at 1 kHz in the as-synthesized mesoporous electrodes, along with their mechanical flexibility and durability, offer peripheral nerve recording functionalities that are successfully demonstrated in vivo. These features highlight the new possibilities of our novel flexible nanoarchitectonics for neuronal recording and modulation applications.


Asunto(s)
Técnicas Biosensibles , Electrónica , Electrodos , Monitoreo Fisiológico , Porosidad
3.
Proc Natl Acad Sci U S A ; 119(33): e2203287119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939711

RESUMEN

Electrical neuron stimulation holds promise for treating chronic neurological disorders, including spinal cord injury, epilepsy, and Parkinson's disease. The implementation of ultrathin, flexible electrodes that can offer noninvasive attachment to soft neural tissues is a breakthrough for timely, continuous, programable, and spatial stimulations. With strict flexibility requirements in neural implanted stimulations, the use of conventional thick and bulky packages is no longer applicable, posing major technical issues such as short device lifetime and long-term stability. We introduce herein a concept of long-lived flexible neural electrodes using silicon carbide (SiC) nanomembranes as a faradic interface and thermal oxide thin films as an electrical barrier layer. The SiC nanomembranes were developed using a chemical vapor deposition (CVD) process at the wafer level, and thermal oxide was grown using a high-quality wet oxidation technique. The proposed material developments are highly scalable and compatible with MEMS technologies, facilitating the mass production of long-lived implanted bioelectrodes. Our experimental results showed excellent stability of the SiC/silicon dioxide (SiO2) bioelectronic system that can potentially last for several decades with well-maintained electronic properties in biofluid environments. We demonstrated the capability of the proposed material system for peripheral nerve stimulation in an animal model, showing muscle contraction responses comparable to those of a standard non-implanted nerve stimulation device. The design concept, scalable fabrication approach, and multimodal functionalities of SiC/SiO2 flexible electronics offer an exciting possibility for fundamental neuroscience studies, as well as for neural stimulation-based therapies.


Asunto(s)
Terapia por Estimulación Eléctrica , Neuroestimuladores Implantables , Nanoestructuras , Semiconductores , Compuestos Inorgánicos de Carbono/química , Terapia por Estimulación Eléctrica/instrumentación , Membranas Artificiales , Compuestos de Silicona/química , Dióxido de Silicio/química
4.
ACS Nano ; 16(7): 10890-10903, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35816450

RESUMEN

The integration of micro- and nanoelectronics into or onto biomedical devices can facilitate advanced diagnostics and treatments of digestive disorders, cardiovascular diseases, and cancers. Recent developments in gastrointestinal endoscopy and balloon catheter technologies introduce promising paths for minimally invasive surgeries to treat these diseases. However, current therapeutic endoscopy systems fail to meet requirements in multifunctionality, biocompatibility, and safety, particularly when integrated with bioelectronic devices. Here, we report materials, device designs, and assembly schemes for transparent and stable cubic silicon carbide (3C-SiC)-based bioelectronic systems that facilitate tissue ablation, with the capability for integration onto the tips of endoscopes. The excellent optical transparency of SiC-on-glass (SoG) allows for direct observation of areas of interest, with superior electronic functionalities that enable multiple biological sensing and stimulation capabilities to assist in electrical-based ablation procedures. Experimental studies on phantom, vegetable, and animal tissues demonstrated relatively short treatment times and low electric field required for effective lesion removal using our SoG bioelectronic system. In vivo experiments on an animal model were conducted to explore the versatility of SoG electrodes for peripheral nerve stimulation, showing an exciting possibility for the therapy of neural disorders through electrical excitation. The multifunctional features of SoG integrated devices indicate their high potential for minimally invasive, cost-effective, and outcome-enhanced surgical tools, across a wide range of biomedical applications.


Asunto(s)
Compuestos Inorgánicos de Carbono , Compuestos de Silicona , Animales , Electrónica , Electrodos
5.
Small ; 18(4): e2105748, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34874620

RESUMEN

Transformation of conventional 2D platforms into unusual 3D configurations provides exciting opportunities for sensors, electronics, optical devices, and biological systems. Engineering material properties or controlling and modulating stresses in thin films to pop-up 3D structures out of standard planar surfaces has been a highly active research topic over the last decade. Implementation of 3D micro and nanoarchitectures enables unprecedented functionalities including multiplexed, monolithic mechanical sensors, vertical integration of electronics components, and recording of neuron activities in 3D organoids. This paper provides an overview on stress engineering approaches to developing 3D functional microsystems. The paper systematically presents the origin of stresses generated in thin films and methods to transform a 2D design into an out-of-plane configuration. Different types of 3D micro and nanostructures, along with their applications in several areas are discussed. The paper concludes with current technical challenges and potential approaches and applications of this fast-growing research direction.


Asunto(s)
Electrónica , Nanoestructuras , Nanoestructuras/química , Organoides
6.
Biomed Tech (Berl) ; 64(1): 93-102, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-29095691

RESUMEN

Rib fracture is a common injury and can result in pain during respiration. Conservative treatment of rib fracture is applied via mechanical ventilation. However, ventilator-associated complications frequently occur. Surgical fixation is another approach to treat rib fractures. Unfortunately, this surgical treatment is still not completely defined. Past studies have evaluated the biomechanics of the rib cage during respiration using a finite element method, but only intact conditions were modelled. Thus, the purpose of this study was to develop a realistic numerical model of the human rib cage and to analyse the biomechanical performance of intact, injured and treated rib cages. Three-dimensional finite element models of the human rib cage were developed. Respiratory movement of the human rib cage was simulated to evaluate the strengths and limitations of different scenarios. The results show that a realistic human respiratory movement can be simulated and the predicted results were closely related to previous study (correlation coefficient>0.92). Fixation of two fractured ribs significantly decreased the fixation index (191%) compared to the injured model. This fixation may provide adequate fixation stability as well as reveal lower bone stress and implant stress compared with the fixation of three or more fractured ribs.


Asunto(s)
Fijación Interna de Fracturas/métodos , Respiración Artificial/métodos , Fracturas de las Costillas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...