Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 143(21): 8164-8176, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34019759

RESUMEN

Thermally resistant air-stable organic triradicals with a quartet ground state and a large energy gap between spin states are still unique compounds. In this work, we succeeded to design and prepare the first highly stable triradical, consisting of oxoverdazyl and nitronyl nitroxide radical fragments, with a quartet ground state. The triradical and its diradical precursor were synthesized via a palladium-catalyzed cross-coupling reaction of diiodoverdazyl with nitronyl nitroxide-2-ide gold(I) complex. Both paramagnetic compounds were fully characterized by single-crystal X-ray diffraction analysis, superconducting quantum interference device magnetometry, EPR spectroscopy in various matrices, and cyclic voltammetry. In the diradical, the verdazyl and nitronyl nitroxide centers demonstrated full reversibility of redox process, while for the triradical, the electrochemical reduction and oxidation proceed at practically the same redox potentials, but become quasi-reversible. A series of high-level CASSCF/NEVPT2 calculations was performed to predict inter- and intramolecular exchange interactions in crystals of di- and triradicals and to establish their magnetic motifs. Based on the predicted magnetic motifs, the temperature dependences of the magnetic susceptibility were analyzed, and the singlet-triplet (135 ± 10 cm-1) and doublet-quartet (17 ± 2 and 152 ± 19 cm-1) splitting was found to be moderate. Unique high stability of synthesized verdazyl-nitronylnitroxide triradical opens new perspectives for further functionalization and design of high-spin systems with four or more spins.

2.
Phys Chem Chem Phys ; 22(38): 21881-21887, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32968753

RESUMEN

The on-demand generation of stable organic radicals from the precursors can be considered as an essential challenge for the plethora of applications in various fields of science. In this contribution, we prepared a range of N-(methyl)benzyl derivatives of 6-oxoverdazyl via atom transfer radical addition from moderate to high yields and studied their thermal- and photo-initiated homolysis. The kinetics of homolysis was measured, and the dissociating rate constant kd, activation energy Ea and frequency factor A were estimated. Variation of the substituent at the C3-position of the verdazyl ring was successfully applied for fine-tuning the homolysis rate: the value of kd was higher for alkylverdazyls with electron-withdrawing groups, e.g., the para nitro group afforded a 6-fold increase in kd. In contrast to thermal homolysis, the rate of photoinduced decomposition depends on both the extinction coefficient and the value of activation energy. Thus, nitro-containing alkylated verdazyls show the highest homolysis rate in both types of initiations. The achieved results afford a novel opportunity in the controlled generation of verdazyls and further application of these compounds in medicine and chemical industry.

3.
Angew Chem Int Ed Engl ; 59(46): 20704-20710, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-32715591

RESUMEN

Thermally stable organic diradicals with a triplet ground state along with large singlet-triplet energy gap have significant potential for advanced technological applications. A series of phenylene-bridged diradicals with oxoverdazyl and nitronyl nitroxide units were synthesized via a palladium-catalyzed cross-coupling reaction of iodoverdazyls with a nitronyl nitroxide-2-ide gold(I) complex with high yields. The diradicals exhibit high stability and do not decompose in an inert atmosphere up to 180 °C. For the diradicals, both substantial AF (ΔEST ≈-64 cm-1 ) and FM (ΔEST ≥25 and 100 cm-1 ) intramolecular exchange interactions were observed. The sign of the exchange interaction is determined both by the bridging moiety (para- or meta-phenylene) and by the type of oxoverdazyl block (C-linked or N-linked). Upon crystallization, diradicals with the triplet ground state form unique one-dimensional exchange-coupled chains with strong intra- and weak inter-diradical ferromagnetic coupling.

4.
Chempluschem ; 85(1): 159-162, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31943893

RESUMEN

An antiferromagnetically (AFM) coupled biradical based on oxoverdazyl and nitronylnitroxide was synthesized in 46 % yield using Sonogashira coupling. The obtained heterobiradical evidenced distinct properties of both radical entities in solution. Depending on the solvent, the prepared biradical crystallized in two different forms. SQUID magnetization measurements on Form II showed coupling constants JintraII /kB =-2.1 K and zJinterII /kB =-11.5 K. Consequently, total intermolecular exchange interactions are five times larger than the intramolecular ones. Further, DFT calculations explained this phenomenon and indicated the advantage of Form I for further in-depth investigations.

5.
Int J Biol Macromol ; 132: 24-31, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30922912

RESUMEN

The work is focused on the development of microspheres based on the combination of two polysaccharides; chitosan and alginic acid with the aim to allocate, hold, release and protect environmentally sensible molecules. The microspheres were prepared using a solvent-free, low cost and scalable approach and two enzymes; trypsin and protease from Aspergillus Oryzae have been used as a model to evaluate the microspheres peculiarities. The proteins were encapsulated during the microspheres preparation. The relationship between the polysaccharides weight ratio and the morphology, stability and ability of the carrier to allocate the enzymes has been evaluated. The enzymatic activity and the release kinetics were assessed in different conditions to assess the impact of the external environment. Obtained results demonstrate the efficacy of the prepared microspheres to preserve the activity of relevant bioactive compounds which are highly relevant in food, cosmetic and pharmaceutic, but the application is limited due to their high sensibility.


Asunto(s)
Ácido Algínico/química , Quitosano/química , Enzimas Inmovilizadas/química , Microesferas , Tripsina/química , Ácido Algínico/toxicidad , Animales , Aspergillus oryzae/enzimología , Cápsulas , Quitosano/toxicidad , Enzimas Inmovilizadas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Ratones , Células 3T3 NIH , Tripsina/metabolismo
6.
J Org Chem ; 83(19): 12056-12070, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30205009

RESUMEN

Pseudocyclic 2-benzimidazolyl-substituted diaryliodonium salts were obtained by the reaction of the corresponding [hydroxy(tosyloxy)iodo]arenes with arenes in the presence of trifluoromethanesulfonic acid. X-ray structural analysis of these iodonium salts confirmed their pseudocyclic structure with a short (2.57-2.58 Å) noncovalent I···N interaction. Treatment of 2-benzimidazolyl-substituted diaryliodonium triflates with a base afforded novel five-membered iodine-nitrogen heterocycles.

7.
Int J Biol Macromol ; 117: 773-780, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29874555

RESUMEN

ß-carotene is a natural compound with significant antioxidant activity. However, its poor solubility in water and low stability reduce its potential application. Innovative polyplexes based on the combination of amphiphilic chitosan assembled with DNA have been developed using a solvent-free, simple and low-cost method with the aim to load, retain and enhance the antioxidant capability of ß-carotene. The polyplexes, with dimension about 100 nm, and excellent stability, were able to hold up to 400 µg of ß-carotene per mg of the carrier, with minimal loss till two weeks. The antioxidant activity was significantly enhanced after loading, as demonstrated using two well known methods. Cytotoxicity assay confirmed the not toxicity of the system. The results suggest the polyplexes as an excellent candidate to develop formulation able to preserve and enhance the peculiarities of compounds which are used mainly in food, cosmetic and pharmaceutic but with still some limitations.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Quitosano/química , ADN/química , Interacciones Hidrofóbicas e Hidrofílicas , beta Caroteno/química , beta Caroteno/farmacología , Animales , Antioxidantes/toxicidad , Compuestos de Bifenilo/química , Estabilidad de Medicamentos , Ratones , Células 3T3 NIH , Picratos/química , Solubilidad , beta Caroteno/toxicidad
8.
J Photochem Photobiol B ; 181: 80-88, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29524849

RESUMEN

An innovative microcarrier based on a carboxy-enriched and branched polylactic acid derivative was developed to enhance the in vitro phototoxicity of the photosensitizer and prodrug 5-aminolevulinic. Microparticles, prepared by double emulsion technique and loaded with the prodrug were carefully characterized and the effect of the polymer structure on the chemical, physical and biological properties of the final product was evaluated. Results showed that microparticles have a spherical shape and ability to allocate up to 30 µg of the photosensitizer per mg of carrier despite their difference in solubility. Release studies performed in various simulated physiological conditions demonstrate the influence of the branched structure and the presence of the additional carboxylic groups on the release rate and the possibility to modulate it. In vitro assays conducted on human epithelial adenocarcinoma cells proved the not cytotoxicity of the carriers in a wide range of concentrations. The hemocompatibility and surface proteins adsorption were evaluated at different microparticles concentrations to evaluate the safety and estimate the possible microparticles residential time in the bloodstream. The advantages, of loading 5-aminolevulinic acid in the prepared carrier has been deeply described in terms of enhanced phototoxicity, compared to the free 5-aminolevulinic acid formulation after irradiation with light at 635 nm. The obtained results demonstrate the advantages of the prepared derivative compared to the linear polylactide for future application in photodynamic therapy based on the photosensitizer 5-aminolevulinic acid.


Asunto(s)
Ácido Aminolevulínico/química , Fármacos Fotosensibilizantes/química , Poliésteres/química , Ácido Aminolevulínico/metabolismo , Ácido Aminolevulínico/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Liberación de Fármacos , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Células HeLa , Hemólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Luz , Fármacos Fotosensibilizantes/toxicidad , Solubilidad
9.
Int J Pharm ; 526(1-2): 380-390, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-28465052

RESUMEN

The use of organic-inorganic hybrid nanocarriers for controlled release of anticancer drugs has been gained a great interest, in particular, to improve the selectivity and efficacy of the drugs. In this study, iron oxide nanoparticles were prepared then surface modified via diazonium chemistry and coated with chitosan, and its derivative chitosan-grafted polylactic acid. The purpose was to increase the stability of the nanoparticles in physiological solution, heighten drug-loading capacity, prolong the release, reduce the initial burst effect and improve in vitro cytotoxicity of the model drug doxorubicin. The materials were characterized by DLS, ζ-potential, SEM, TGA, magnetization curves and release kinetics studies. Results confirmed the spherical shape, the presence of the coat and the advantages of using chitosan, particularly its amphiphilic derivative, as a coating agent, thereby surpassing the qualities of simple iron oxide nanoparticles. The coated nanoparticles exhibited great stability and high encapsulation efficiency for doxorubicin, at over 500µg per mg of carrier. Moreover, the intensity of the initial burst was clearly diminished after coating, hence represents an advantage of using the hybrid system over simple iron oxide nanoparticles. Cytotoxicity studies demonstrate the increase in cytotoxicity of doxorubicin when loaded in nanoparticles, indirectly proving the role played by the carrier and its surface properties in cell uptake.


Asunto(s)
Antineoplásicos/administración & dosificación , Quitosano/química , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Nanopartículas/química , Células HeLa , Humanos , Propiedades de Superficie
10.
Beilstein J Org Chem ; 11: 358-62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25977709

RESUMEN

An environmentally friendly Matsuda-Heck reaction with arenediazonium tosylates has been developed for the first time. A range of alkenes was arylated in good to quantitative yields in water. The reaction is significantly accelerated when carried out under microwave heating. The arylation of haloalkylacrylates with diazonium salts has been implemented for the first time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...