Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Res ; 11(12): 1611-1629, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37933083

RESUMEN

Forkhead box P3 (Foxp3)-expressing regulatory T cells (Treg) are the guardians of controlled immune reactions and prevent the development of autoimmune diseases. However, in the tumor context, their increased number suppresses antitumor immune responses, indicating the importance of understanding the mechanisms behind their function and stability. Metabolic reprogramming can affect Foxp3 regulation and, therefore, Treg suppressive function and fitness. Here, we performed a metabolic CRISPR/Cas9 screen and pinpointed novel candidate positive and negative metabolic regulators of Foxp3. Among the positive regulators, we revealed that targeting the GDP-fucose transporter Slc35c1, and more broadly fucosylation (Fuco), in Tregs compromises their proliferation and suppressive function both in vitro and in vivo, leading to alteration of the tumor microenvironment and impaired tumor progression and protumoral immune responses. Pharmacologic inhibition of Fuco dampened tumor immunosuppression mostly by targeting Tregs, thus resulting in reduced tumor growth. In order to substantiate these findings in humans, tumoral Tregs from patients with colorectal cancer were clustered on the basis of the expression of Fuco-related genes. FucoLOW Tregs were found to exhibit a more immunogenic profile compared with FucoHIGH Tregs. Furthermore, an enrichment of a FucoLOW signature, mainly derived from Tregs, correlated with better prognosis and response to immune checkpoint blockade in melanoma patients. In conclusion, Slc35c1-dependent Fuco is able to regulate the suppressive function of Tregs, and measuring its expression in Tregs might pave the way towards a useful biomarker model for patients with cancer. See related Spotlight by Silveria and DuPage, p. 1570.


Asunto(s)
Melanoma , Linfocitos T Reguladores , Humanos , Inmunidad , Tolerancia Inmunológica , Factores de Transcripción Forkhead/genética , Microambiente Tumoral
2.
Cancer Immunol Res ; 11(3): 339-350, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603132

RESUMEN

The prolyl hydroxylase domain/hypoxia-inducible factor (PHD/HIF) pathway has been implicated in a wide range of immune and inflammatory processes, including in the oxygen-deprived tumor microenvironment. To examine the effect of HIF stabilization in antitumor immunity, we deleted Phd2 selectively in T lymphocytes using the cre/lox system. We show that the deletion of PHD2 in lymphocytes resulted in enhanced regression of EG7-OVA tumors, in a HIF-1α-dependent manner. The enhanced control of neoplastic growth correlated with increased polyfunctionality of CD8+ tumor-infiltrating lymphocytes, as indicated by enhanced expression of IFNγ, TNFα, and granzyme B. Phenotypic and transcriptomic analyses pointed to a key role of glycolysis in sustaining CTL activity in the tumor bed and identified the PHD2/HIF-1 pathway as a potential target for cancer immunotherapy.


Asunto(s)
Prolina Dioxigenasas del Factor Inducible por Hipoxia , Neoplasias , Humanos , Procolágeno-Prolina Dioxigenasa/metabolismo , Oxígeno , Linfocitos T CD8-positivos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Microambiente Tumoral
3.
Cell Rep ; 18(12): 2836-2844, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28329677

RESUMEN

B55α is a regulatory subunit of the PP2A phosphatase. We have recently found that B55α-associated PP2A promotes partial deactivation of the HIF-prolyl-hydroxylase enzyme PHD2. Here, we show that, in turn, PHD2 triggers degradation of B55α by hydroxylating it at proline 319. In the context of glucose starvation, PHD2 reduces B55α protein levels, which correlates with MDA-MB231 and MCF7 breast cancer cell death. Under these conditions, PHD2 silencing rescues B55α degradation, overcoming apoptosis, whereas in SKBR3 breast cancer cells showing resistance to glucose starvation, B55α knockdown restores cell death and prevents neoplastic growth in vitro. Treatment of MDA-MB231-derived xenografts with the glucose competitor 2-deoxy-glucose leads to tumor regression in the presence of PHD2. Knockdown of PHD2 induces B55α accumulation and treatment resistance by preventing cell apoptosis. Overall, our data unravel B55α as a PHD2 substrate and highlight a role for PHD2-B55α in the response to nutrient deprivation.


Asunto(s)
Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Glucosa/deficiencia , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Proteína Fosfatasa 2/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Silenciador del Gen , Células HEK293 , Humanos , Hidroxilación , Ratones , Prolina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitinación
4.
Cell Rep ; 18(7): 1699-1712, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28199842

RESUMEN

Oxygen-dependent HIF1α hydroxylation and degradation are strictly controlled by PHD2. In hypoxia, HIF1α partly escapes degradation because of low oxygen availability. Here, we show that PHD2 is phosphorylated on serine 125 (S125) by the mechanistic target of rapamycin (mTOR) downstream kinase P70S6K and that this phosphorylation increases its ability to degrade HIF1α. mTOR blockade in hypoxia by REDD1 restrains P70S6K and unleashes PP2A phosphatase activity. Through its regulatory subunit B55α, PP2A directly dephosphorylates PHD2 on S125, resulting in a further reduction of PHD2 activity that ultimately boosts HIF1α accumulation. These events promote autophagy-mediated cell survival in colorectal cancer (CRC) cells. B55α knockdown blocks neoplastic growth of CRC cells in vitro and in vivo in a PHD2-dependent manner. In patients, CRC tissue expresses higher levels of REDD1, B55α, and HIF1α but has lower phospho-S125 PHD2 compared with a healthy colon. Our data disclose a mechanism of PHD2 regulation that involves the mTOR and PP2A pathways and controls tumor growth.


Asunto(s)
Hipoxia de la Célula/fisiología , Supervivencia Celular/fisiología , Neoplasias Colorrectales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Proteína Fosfatasa 2/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular/fisiología , Células HEK293 , Células HT29 , Humanos , Fosforilación/fisiología , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...