Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hered ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38624218

RESUMEN

The first record of captive bred red foxes (Vulpes vulpes) dates to 1896, when a breeding enterprise emerged in the provinces of Atlantic Canada. Because its domestication happened during recent history, the red fox offers a unique opportunity to examine the genetic diversity of an emerging domesticated species in the context of documented historical and economic influences. In particular, the historical record suggests that North American and Eurasian farm-bred populations likely experienced different demographic trajectories. Here, we focus on the likely impacts of founder effects and genetic drift given historical trends in fox farming on North American and Eurasian farms. A total of 15 mitochondrial haplotypes were identified in 369 foxes from 10 farm populations that we genotyped (n=161) or that were previously published. All haplotypes are endemic to North America. Although most haplotypes were consistent with eastern Canadian ancestry, a small number of foxes carried haplotypes typically found in Alaska and other regions of western North America. The presence of these haplotypes supports historical reports of wild foxes outside of Atlantic Canada being introduced into the breeding stock. These putative Alaskan and Western haplotypes were more frequently identified in Eurasian farms compared to North American farms, consistent with historical documentation suggesting that Eurasian economic and breeding practices were likely to maintain low-frequency haplotypes more effectively than in North America. Contextualizing inter- versus intra-farm genetic diversity alongside the historical record is critical to understanding of the origins of this emerging domesticate and the relationships between wild and farm-bred fox populations.

2.
Brain Struct Funct ; 228(5): 1177-1189, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37160458

RESUMEN

Although the silver fox (Vulpes vulpes) has been largely overlooked by neuroscientists, it has the potential to serve as a powerful model for the investigation of brain-behavior relationships. The silver fox is a melanistic variant of the red fox. Within this species, the long-running Russian farm-fox experiment has resulted in different strains bred to show divergent behavior. Strains bred for tameness, aggression, or without selection on behavior present an excellent opportunity to investigate neuroanatomical changes underlying behavioral characteristics. Here, we present a histological and MRI neuroanatomical reference of a fox from the conventional strain, which is bred without behavioral selection. This can provide an anatomical basis for future studies of the brains of foxes from this particular experiment, as well as contribute to an understanding of fox brains in general. In addition, this can serve as a resource for comparative neuroscience and investigations into neuroanatomical variation among the family Canidae, the order Carnivora, and mammals more broadly.


Asunto(s)
Agresión , Zorros , Animales , Encéfalo
3.
Hippocampus ; 33(6): 700-711, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37159095

RESUMEN

Since 1959, the Russian Farm-Fox study has bred foxes to be either tame or, more recently, aggressive, and scientists have used them to gain insight into the brain structures associated with these behavioral features. In mice, hippocampal area CA2 has emerged as one of the essential regulators of social aggression, and so to eventually determine whether we could identify differences in CA2 between tame and aggressive foxes, we first sought to identify CA2 in foxes (Vulpes vulpes). As no clearly defined area of CA2 has been described in species such as cats, dogs, or pigs, it was not at all clear whether CA2 could be identified in foxes. In this study, we cut sections of temporal lobes from male and female red foxes, perpendicular to the long axis of the hippocampus, and stained them with markers of CA2 pyramidal cells commonly used in tissue from rats and mice. We observed that antibodies against Purkinje cell protein 4 best stained the pyramidal cells in the area spanning the end of the mossy fibers and the beginning of the pyramidal cells lacking mossy fibers, resembling the pattern seen in rats and mice. Our findings indicate that foxes do have a "molecularly defined" CA2, and further, they suggest that other carnivores like dogs and cats might as well. With this being the case, these foxes could be useful in future studies looking at CA2 as it relates to aggression.


Asunto(s)
Enfermedades de los Gatos , Enfermedades de los Perros , Animales , Femenino , Masculino , Perros , Gatos , Ratones , Ratas , Porcinos , Zorros , Encéfalo , Hipocampo
4.
J Neurosci ; 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127519

RESUMEN

The Russian fox-farm experiment is an unusually long-running and well-controlled study designed to replicate wolf-to-dog domestication. As such, it offers an unprecedented window onto the neural mechanisms governing the evolution of behavior. Here we report evolved changes to gray matter morphology resulting from selection for tameness vs. aggressive responses toward humans in a sample of 30 male fox brains. Contrasting with standing ideas on the effects of domestication on brain size, tame foxes did not show reduced brain volume. Rather, gray matter volume in both the tame and aggressive strains was increased relative to conventional farm foxes bred without deliberate selection on behavior. Furthermore, tame- and aggressive-enlarged regions overlapped substantially, including portions of motor, somatosensory, and prefrontal cortex, amygdala, hippocampus, and cerebellum. We also observed differential morphological covariation across distributed gray matter networks. In one prefrontal-cerebellum network, this covariation differentiated the three populations along the tame-aggressive behavioral axis. Surprisingly, a prefrontal-hypothalamic network differentiated the tame and aggressive foxes together from the conventional strain. These findings indicate that selection for opposite behaviors can influence brain morphology in a similar way.SIGNIFICANCE STATEMENTDomestication represents one of the largest and most rapid evolutionary shifts of life on earth. However, its neural correlates are largely unknown. Here we report the neuroanatomical consequences of selective breeding for tameness or aggression in the seminal Russian fox-farm experiment. Compared to a population of conventional farm-bred control foxes, tame foxes show neuroanatomical changes in the prefrontal cortex and hypothalamus, paralleling wolf-to-dog shifts. Surprisingly, though, aggressive foxes also show similar changes. Moreover, both strains show increased gray matter volume relative to controls. These results indicate that similar brain adaptations can result from selection for opposite behavior, that existing ideas of brain changes in domestication may need revision, and that significant neuroanatomical change can evolve very quickly - within the span of less than a hundred generations.

5.
6.
Genes Brain Behav ; 19(1): e12614, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31605445

RESUMEN

The underlying neurological events accompanying dog domestication remain elusive. To reconstruct the domestication process in an experimental setting, silver foxes (Vulpes vulpes) have been deliberately bred for tame vs aggressive behaviors for more than 50 generations at the Institute for Cytology and Genetics in Novosibirsk, Russia. The hypothalamus is an essential part of the hypothalamic-pituitary-adrenal axis and regulates the fight-or-flight response, and thus, we hypothesized that selective breeding for tameness/aggressiveness has shaped the hypothalamic transcriptomic profile. RNA-seq analysis identified 70 differentially expressed genes (DEGs). Seven of these genes, DKKL1, FBLN7, NPL, PRIMPOL, PTGRN, SHCBP1L and SKIV2L, showed the same direction expression differences in the hypothalamus, basal forebrain and prefrontal cortex. The genes differentially expressed across the three tissues are involved in cell division, differentiation, adhesion and carbohydrate processing, suggesting an association of these processes with selective breeding. Additionally, 159 transcripts from the hypothalamus demonstrated differences in the abundance of alternative spliced forms between the tame and aggressive foxes. Weighted gene coexpression network analyses also suggested that gene modules in hypothalamus were significantly associated with tame vs aggressive behavior. Pathways associated with these modules include signal transduction, interleukin signaling, cytokine-cytokine receptor interaction and peptide ligand-binding receptors (eg, G-protein coupled receptor [GPCR] ligand binding). Current studies show the selection for tameness vs aggressiveness in foxes is associated with unique hypothalamic gene profiles partly shared with other brain regions and highlight DEGs involved in biological processes such as development, differentiation and immunological responses. The role of these processes in fox and dog domestication remains to be determined.


Asunto(s)
Agresión , Zorros/genética , Hipotálamo/metabolismo , Transcriptoma , Animales , Zorros/fisiología , Redes Reguladoras de Genes
7.
Genes (Basel) ; 10(6)2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31142040

RESUMEN

While the number of mammalian genome assemblies has proliferated, Y-chromosome assemblies have lagged behind. This discrepancy is caused by biological features of the Y-chromosome, such as its high repeat content, that present challenges to assembly with short-read, next-generation sequencing technologies. Partial Y-chromosome assemblies have been developed for the cat (Feliscatus), dog (Canislupusfamiliaris), and grey wolf (Canislupuslupus), providing the opportunity to examine the red fox (Vulpesvulpes) Y-chromosome in the context of closely related species. Here we present a data-driven approach to identifying Y-chromosome sequence among the scaffolds that comprise the short-read assembled red fox genome. First, scaffolds containing genes found on the Y-chromosomes of cats, dogs, and wolves were identified. Next, analysis of the resequenced genomes of 15 male and 15 female foxes revealed scaffolds containing male-specific k-mers and patterns of inter-sex copy number variation consistent with the heterogametic chromosome. Analyzing variation across these two metrics revealed 171 scaffolds containing 3.37 Mbp of putative Y-chromosome sequence. The gene content of these scaffolds is consistent overall with that of the Y-chromosome in other carnivore species, though the red fox Y-chromosome carries more copies of BCORY2 and UBE1Y than has been reported in related species and fewer copies of SRY than in other canids. The assignment of these scaffolds to the Y-chromosome serves to further characterize the content of the red fox draft genome while providing resources for future analyses of canid Y-chromosome evolution.


Asunto(s)
Zorros/genética , Genoma , Cromosoma Y/genética , Animales , Carnívoros/genética , Gatos , Variaciones en el Número de Copia de ADN/genética , Perros , Femenino , Masculino , Filogenia , Lobos/genética
9.
Proc Natl Acad Sci U S A ; 115(41): 10398-10403, 2018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30228118

RESUMEN

Animal domestication efforts have led to a shared spectrum of striking behavioral and morphological changes. To recapitulate this process, silver foxes have been selectively bred for tame and aggressive behaviors for more than 50 generations at the Institute for Cytology and Genetics in Novosibirsk, Russia. To understand the genetic basis and molecular mechanisms underlying the phenotypic changes, we profiled gene expression levels and coding SNP allele frequencies in two brain tissue specimens from 12 aggressive foxes and 12 tame foxes. Expression analysis revealed 146 genes in the prefrontal cortex and 33 genes in the basal forebrain that were differentially expressed, with a 5% false discovery rate (FDR). These candidates include genes in key pathways known to be critical to neurologic processing, including the serotonin and glutamate receptor pathways. In addition, 295 of the 31,000 exonic SNPs show significant allele frequency differences between the tame and aggressive populations (1% FDR), including genes with a role in neural crest cell fate determination.


Asunto(s)
Agresión , Conducta Animal , Encéfalo/metabolismo , Zorros/genética , Genoma , Selección Genética , Transcriptoma , Animales , Zorros/psicología , Genómica , Masculino , Polimorfismo de Nucleótido Simple , Federación de Rusia
10.
Nat Ecol Evol ; 2(9): 1514, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104754

RESUMEN

In the version of this Article originally published, there were some errors in the affiliations: Stephen J. O'Brien's affiliations were incorrectly listed as 8,9; they should have been 7,9. Affiliation 3 was incorrectly named the Institute of Cytology and Genetics of the Russian Academy of Sciences; it should have read Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences. Affiliation 4 was incorrectly named the Institute of Molecular and Cell Biology of the Russian Academy of Sciences; it should have read Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences. These have now been corrected.

11.
Nat Ecol Evol ; 2(9): 1479-1491, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30082739

RESUMEN

Strains of red fox (Vulpes vulpes) with markedly different behavioural phenotypes have been developed in the famous long-term selective breeding programme known as the Russian farm-fox experiment. Here we sequenced and assembled the red fox genome and re-sequenced a subset of foxes from the tame, aggressive and conventional farm-bred populations to identify genomic regions associated with the response to selection for behaviour. Analysis of the re-sequenced genomes identified 103 regions with either significantly decreased heterozygosity in one of the three populations or increased divergence between the populations. A strong positional candidate gene for tame behaviour was highlighted: SorCS1, which encodes the main trafficking protein for AMPA glutamate receptors and neurexins and suggests a role for synaptic plasticity in fox domestication. Other regions identified as likely to have been under selection in foxes include genes implicated in human neurological disorders, mouse behaviour and dog domestication. The fox represents a powerful model for the genetic analysis of affiliative and aggressive behaviours that can benefit genetic studies of behaviour in dogs and other mammals, including humans.


Asunto(s)
Agresión , Conducta Animal , Zorros/fisiología , Genoma , Animales , Femenino , Masculino
12.
Genes (Basel) ; 9(6)2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925783

RESUMEN

The genome of a red fox (Vulpes vulpes) was recently sequenced and assembled using next-generation sequencing (NGS). The assembly is of high quality, with 94X coverage and a scaffold N50 of 11.8 Mbp, but is split into 676,878 scaffolds, some of which are likely to contain assembly errors. Fragmentation and misassembly hinder accurate gene prediction and downstream analysis such as the identification of loci under selection. Therefore, assembly of the genome into chromosome-scale fragments was an important step towards developing this genomic model. Scaffolds from the assembly were aligned to the dog reference genome and compared to the alignment of an outgroup genome (cat) against the dog to identify syntenic sequences among species. The program Reference-Assisted Chromosome Assembly (RACA) then integrated the comparative alignment with the mapping of the raw sequencing reads generated during assembly against the fox scaffolds. The 128 sequence fragments RACA assembled were compared to the fox meiotic linkage map to guide the construction of 40 chromosomal fragments. This computational approach to assembly was facilitated by prior research in comparative mammalian genomics, and the continued improvement of the red fox genome can in turn offer insight into canid and carnivore chromosome evolution. This assembly is also necessary for advancing genetic research in foxes and other canids.

13.
G3 (Bethesda) ; 8(3): 859-873, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29378821

RESUMEN

Domesticated species exhibit a suite of behavioral, endocrinological, and morphological changes referred to as "domestication syndrome." These changes may include a reduction in reactivity of the hypothalamic-pituitary-adrenal (HPA) axis and specifically reduced adrenocorticotropic hormone release from the anterior pituitary. To investigate the biological mechanisms targeted during domestication, we investigated gene expression in the pituitaries of experimentally domesticated foxes (Vulpes vulpes). RNA was sequenced from the anterior pituitary of six foxes selectively bred for tameness ("tame foxes") and six foxes selectively bred for aggression ("aggressive foxes"). Expression, splicing, and network differences identified between the two lines indicated the importance of genes related to regulation of exocytosis, specifically mediated by cAMP, organization of pseudopodia, and cell motility. These findings provide new insights into biological mechanisms that may have been targeted when these lines of foxes were selected for behavior and suggest new directions for research into HPA axis regulation and the biological underpinnings of domestication.


Asunto(s)
Hormona Adrenocorticotrópica/metabolismo , Agresión , Conducta Animal , Zorros/genética , Zorros/metabolismo , Adenohipófisis/metabolismo , Transcriptoma , Empalme Alternativo , Animales , Biología Computacional/métodos , Domesticación , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal
14.
J Hered ; 108(6): 678-685, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28821189

RESUMEN

The de novo assembly of the red fox (Vulpes vulpes) genome has facilitated the development of genomic tools for the species. Efforts to identify the population history of red foxes in North America have previously been limited by a lack of information about the red fox Y-chromosome sequence. However, a megabase of red fox Y-chromosome sequence was recently identified over 2 scaffolds in the reference genome. Here, these scaffolds were scanned for repeated motifs, revealing 194 likely microsatellites. Twenty-three of these loci were selected for primer development and, after testing, produced a panel of 11 novel markers that were analyzed alongside 2 markers previously developed for the red fox from dog Y-chromosome sequence. The markers were genotyped in 76 male red foxes from 4 populations: 7 foxes from Newfoundland (eastern Canada), 12 from Maryland (eastern United States), and 9 from the island of Great Britain, as well as 48 foxes of known North American origin maintained on an experimental farm in Novosibirsk, Russia. The full marker panel revealed 22 haplotypes among these red foxes, whereas the 2 previously known markers alone would have identified only 10 haplotypes. The haplotypes from the 4 populations clustered primarily by continent, but unidirectional gene flow from Great Britain and farm populations may influence haplotype diversity in the Maryland population. The development of new markers has increased the resolution at which red fox Y-chromosome diversity can be analyzed and provides insight into the contribution of males to red fox population diversity and patterns of phylogeography.


Asunto(s)
Zorros/genética , Marcadores Genéticos , Genética de Población , Cromosoma Y/genética , Animales , Cartilla de ADN , Flujo Génico , Haplotipos , Masculino , Maryland , Repeticiones de Microsatélite , Terranova y Labrador , Filogeografía , Federación de Rusia , Análisis de Secuencia de ADN , Reino Unido
16.
PLoS One ; 12(4): e0175043, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28369080

RESUMEN

Domestication has been consistently accompanied by a suite of traits called the domestication syndrome. These include increased docility, changes in coat coloration, prolonged juvenile behaviors, modified function of adrenal glands and reduced craniofacial dimensions. Wilkins et al recently proposed that the mechanistic factor underlying traits that encompass the domestication syndrome was altered neural crest cell (NCC) development. NCC form the precursors to a large number of tissue types including pigment cells, adrenal glands, teeth and the bones of the face. The hypothesis that deficits in NCC development can account for the domestication syndrome was partly based on the outcomes of Dmitri Belyaev's domestication experiments initially conducted on silver foxes. After generations of selecting for tameness, the foxes displayed phenotypes observed in domesticated species. Belyaev also had a colony of rats selected over 64 generations for either tameness or defensive aggression towards humans. Here we focus on the facial morphology of Belyaev's tame, 'domesticated' rats to test whether: 1) tameness in rats causes craniofacial changes similar to those observed in the foxes; 2) facial shape, i.e. NCC-derived region, is distinct in the tame and aggressive rats. We used computed-tomography scans of rat skulls and landmark-based geometric morphometrics to quantify and analyze the facial skeleton. We found facial shape differences between the tame and aggressive rats that were independent of size and which mirrored changes seen in domesticated animals compared to their wild counterparts. However, there was no evidence of reduced sexual dimorphism in the face of the tame rats. This indicates that not all morphological changes in NCC-derived regions in the rats follow the pattern of shape change reported in domesticated animals or the silver foxes. Thus, certain phenotypic trends that are part of the domestication syndrome might not be consistently present in all experimental animal models.


Asunto(s)
Agresión/fisiología , Animales Domésticos/fisiología , Conducta Animal/fisiología , Cara/fisiología , Expresión Facial , Animales , Cruzamiento , Domesticación , Zorros/fisiología , Ratas , Cráneo/fisiología
17.
Behav Genet ; 47(1): 88-101, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27757730

RESUMEN

Individuals involved in a social interaction exhibit different behavioral traits that, in combination, form the individual's behavioral responses. Selectively bred strains of silver foxes (Vulpes vulpes) demonstrate markedly different behaviors in their response to humans. To identify the genetic basis of these behavioral differences we constructed a large F2 population including 537 individuals by cross-breeding tame and aggressive fox strains. 98 fox behavioral traits were recorded during social interaction with a human experimenter in a standard four-step test. Patterns of fox behaviors during the test were evaluated using principal component (PC) analysis. Genetic mapping identified eight unique significant and suggestive QTL. Mapping results for the PC phenotypes from different test steps showed little overlap suggesting that different QTL are involved in regulation of behaviors exhibited in different behavioral contexts. Many individual behavioral traits mapped to the same genomic regions as PC phenotypes. This provides additional information about specific behaviors regulated by these loci. Further, three pairs of epistatic loci were also identified for PC phenotypes suggesting more complex genetic architecture of the behavioral differences between the two strains than what has previously been observed.


Asunto(s)
Conducta Animal , Zorros/genética , Conducta Social , Animales , Mapeo Cromosómico , Cromosomas de los Mamíferos/genética , Epistasis Genética , Femenino , Masculino , Fenotipo , Análisis de Componente Principal , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable
19.
PLoS One ; 10(6): e0127013, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26061395

RESUMEN

The silver fox (Vulpes vulpes) offers a novel model for studying the genetics of social behavior and animal domestication. Selection of foxes, separately, for tame and for aggressive behavior has yielded two strains with markedly different, genetically determined, behavioral phenotypes. Tame strain foxes are eager to establish human contact while foxes from the aggressive strain are aggressive and difficult to handle. These strains have been maintained as separate outbred lines for over 40 generations but their genetic structure has not been previously investigated. We applied a genotyping-by-sequencing (GBS) approach to provide insights into the genetic composition of these fox populations. Sequence analysis of EcoT22I genomic libraries of tame and aggressive foxes identified 48,294 high quality SNPs. Population structure analysis revealed genetic divergence between the two strains and more diversity in the aggressive strain than in the tame one. Significant differences in allele frequency between the strains were identified for 68 SNPs. Three of these SNPs were located on fox chromosome 14 within an interval of a previously identified behavioral QTL, further supporting the importance of this region for behavior. The GBS SNP data confirmed that significant genetic diversity has been preserved in both fox populations despite many years of selective breeding. Analysis of SNP allele frequencies in the two populations identified several regions of genetic divergence between the tame and aggressive foxes, some of which may represent targets of selection for behavior. The GBS protocol used in this study significantly expanded genomic resources for the fox, and can be adapted for SNP discovery and genotyping in other canid species.


Asunto(s)
Agresión , Conducta Animal , Zorros/genética , Genotipo , Sitios de Carácter Cuantitativo , Animales , Mapeo Cromosómico , Zorros/fisiología , Frecuencia de los Genes , Polimorfismo de Nucleótido Simple
20.
Hippocampus ; 25(8): 963-75, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25616112

RESUMEN

Work on laboratory and wild rodents suggests that domestication may impact on the extent of adult hippocampal neurogenesis and its responsiveness to regulatory factors. There is, however, no model of laboratory rodents and their nondomesticated conspecifics that would allow a controlled comparison of the effect of domestication. Here, we present a controlled within-species comparison of adult hippocampal neurogenesis in farm-bred foxes (Vulpes vulpes) that differ in their genetically determined degree of tameness. Quantitative comparisons of cell proliferation (Ki67) and differentiating cells of neuronal lineage (doublecortin, DCX) in the hippocampus of foxes were performed as a proxy for neurogenesis. Higher neurogenesis was observed in tameness-selected foxes, notably in an extended subgranular zone of the middle and temporal compartments of the hippocampus. Increased neurogenesis is negatively associated with aggressive behavior. Across all animals, strong septotemporal gradients were found, with higher numbers of proliferating cells and young neurons relative to resident granule cells in the temporal than in the septal hippocampus. The opposite gradient was found for the ratio of DCX/Ki67- positive cells. When tameness-selected and unselected foxes are compared with rodents and primates, proliferation is similar, while the number of young neurons is higher. The difference may be mediated by an extended period of differentiation or higher rate of survival. On the background of this species-specific neurogenic pattern, selection of foxes for a single behavioral trait key to domestication, i.e., genetic tameness, is accompanied by global and region-specific increases in neurogenesis.


Asunto(s)
Animales Domésticos/fisiología , Corteza Entorrinal/citología , Hipocampo/citología , Neurogénesis/fisiología , Neuronas/fisiología , Agresión/fisiología , Análisis de Varianza , Animales , Recuento de Células , Diferenciación Celular , Proliferación Celular/fisiología , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Zorros/anatomía & histología , Antígeno Ki-67/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...