Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Nature ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658756

RESUMEN

The liver is the main gateway from the gut, and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zones, including the periportal vein (PV) and the pericentral vein zones1-5. However, functional differences in the immune system in each zone remain poorly understood. Here intravital imaging revealed that inflammatory responses are suppressed in PV zones. Zone-specific single-cell transcriptomics detected a subset of immunosuppressive macrophages enriched in PV zones that express high levels of interleukin-10 and Marco, a scavenger receptor that sequesters pro-inflammatory pathogen-associated molecular patterns and damage-associated molecular patterns, and consequently suppress immune responses. Induction of Marco+ immunosuppressive macrophages depended on gut microbiota. In particular, a specific bacterial family, Odoribacteraceae, was identified to induce this macrophage subset through its postbiotic isoallolithocholic acid. Intestinal barrier leakage resulted in inflammation in PV zones, which was markedly augmented in Marco-deficient conditions. Chronic liver inflammatory diseases such as primary sclerosing cholangitis (PSC) and non-alcoholic steatohepatitis (NASH) showed decreased numbers of Marco+ macrophages. Functional ablation of Marco+ macrophages led to PSC-like inflammatory phenotypes related to colitis and exacerbated steatosis in NASH in animal experimental models. Collectively, commensal bacteria induce Marco+ immunosuppressive macrophages, which consequently limit excessive inflammation at the gateway of the liver. Failure of this self-limiting system promotes hepatic inflammatory disorders such as PSC and NASH.

2.
J Exp Med ; 220(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37516911

RESUMEN

Leukemia cutis or leukemic cell infiltration in skin is one of the common extramedullary manifestations of acute myeloid leukemia (AML) and signifies a poorer prognosis. However, its pathogenesis and maintenance remain understudied. Here, we report massive AML cell infiltration in the skin in a transplantation-induced MLL-AF9 AML mouse model. These AML cells could regenerate AML after transplantation. Prospective niche characterization revealed that skin harbored mesenchymal progenitor cells (MPCs) with a similar phenotype as BM mesenchymal stem cells. These skin MPCs protected AML-initiating stem cells (LSCs) from chemotherapy in vitro partially via mitochondrial transfer. Furthermore, Lama4 deletion in skin MPCs promoted AML LSC proliferation and chemoresistance. Importantly, more chemoresistant AML LSCs appeared to be retained in Lama4-/- mouse skin after cytarabine treatment. Our study reveals the characteristics and previously unrecognized roles of skin mesenchymal niches in maintaining and protecting AML LSCs during chemotherapy, meriting future exploration of their impact on AML relapse.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Animales , Ratones , Estudios Prospectivos , Células Madre , Piel
3.
NPJ Regen Med ; 8(1): 26, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37236990

RESUMEN

Ischemic heart disease, which is often associated with irreversibly damaged heart muscle, is a major global health burden. Here, we report the potential of stem cell-derived committed cardiac progenitors (CCPs) have in regenerative cardiology. Human pluripotent embryonic stem cells were differentiated to CCPs on a laminin 521 + 221 matrix, characterized with bulk and single-cell RNA sequencing, and transplanted into infarcted pig hearts. CCPs differentiated for eleven days expressed a set of genes showing higher expression than cells differentiated for seven days. Functional heart studies revealed significant improvement in left ventricular ejection fraction at four and twelve weeks following transplantation. We also observed significant improvements in ventricular wall thickness and a reduction in infarction size after CCP transplantation (p-value < 0.05). Immunohistology analyses revealed in vivo maturation of the CCPs into cardiomyocytes (CM). We observed temporary episodes of ventricular tachyarrhythmia (VT) in four pigs and persistent VT in one pig, but the remaining five pigs exhibited normal sinus rhythm. Importantly, all pigs survived without the formation of any tumors or VT-related abnormalities. We conclude that pluripotent stem cell-derived CCPs constitute a promising possibility for myocardial infarction treatment and that they may positively impact regenerative cardiology.

4.
Mol Ther ; 31(3): 825-846, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36638800

RESUMEN

Blindness caused by advanced stages of inherited retinal diseases and age-related macular degeneration are characterized by photoreceptor loss. Cell therapy involving replacement with functional photoreceptor-like cells generated from human pluripotent stem cells holds great promise. Here, we generated a human recombinant retina-specific laminin isoform, LN523, and demonstrated the role in promoting the differentiation of human embryonic stem cells into photoreceptor progenitors. This chemically defined and xenogen-free method enables reproducible production of photoreceptor progenitors within 32 days. We observed that the transplantation into rd10 mice were able to protect the host photoreceptor outer nuclear layer (ONL) up to 2 weeks post transplantation as measured by full-field electroretinogram. At 4 weeks post transplantation, the engrafted cells were found to survive, mature, and associate with the host's rod bipolar cells. Visual behavioral assessment using the water maze swimming test demonstrated visual improvement in the cell-transplanted rodents. At 20 weeks post transplantation, the maturing engrafted cells were able to replace the loss of host ONL by extensive association with host bipolar cells and synapses. Post-transplanted rabbit model also provided congruent evidence for synaptic connectivity with the degenerated host retina. The results may pave the way for the development of stem cell-based therapeutics for retina degeneration.


Asunto(s)
Células Madre Pluripotentes , Degeneración Retiniana , Humanos , Ratones , Animales , Conejos , Laminina/genética , Retina , Células Fotorreceptoras , Degeneración Retiniana/genética , Degeneración Retiniana/terapia , Diferenciación Celular
5.
J Exp Med ; 219(10)2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36129453

RESUMEN

Nucleotide-binding oligomerization domain (NBD), leucine-rich repeat (LRR) containing protein family (NLRs) are intracellular pattern recognition receptors that mediate innate immunity against infections. The endothelium is the first line of defense against blood-borne pathogens, but it is unclear which NLRs control endothelial cell (EC) intrinsic immunity. Here, we demonstrate that human ECs simultaneously activate NLRP1 and CARD8 inflammasomes in response to DPP8/9 inhibitor Val-boro-Pro (VbP). Enterovirus Coxsackie virus B3 (CVB3)-the most common cause of viral myocarditis-predominantly activates CARD8 in ECs in a manner that requires viral 2A and 3C protease cleavage at CARD8 p.G38 and proteasome function. Genetic deletion of CARD8 in ECs and human embryonic stem cell-derived cardiomyocytes (HCMs) attenuates CVB3-induced pyroptosis, inflammation, and viral propagation. Furthermore, using a stratified endothelial-cardiomyocyte co-culture system, we demonstrate that deleting CARD8 in ECs reduces CVB3 infection of the underlying cardiomyocytes. Our study uncovers the unique role of CARD8 inflammasome in endothelium-intrinsic anti-viral immunity.


Asunto(s)
Sistema Cardiovascular , Inflamasomas , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Sistema Cardiovascular/metabolismo , Humanos , Inflamasomas/metabolismo , Leucina , Proteínas de Neoplasias/metabolismo , Nucleótidos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteasas Virales
6.
Mol Cell ; 82(15): 2885-2899.e8, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35841888

RESUMEN

Translated small open reading frames (smORFs) can have important regulatory roles and encode microproteins, yet their genome-wide identification has been challenging. We determined the ribosome locations across six primary human cell types and five tissues and detected 7,767 smORFs with translational profiles matching those of known proteins. The human genome was found to contain highly cell-type- and tissue-specific smORFs and a subset that encodes highly conserved amino acid sequences. Changes in the translational efficiency of upstream-encoded smORFs (uORFs) and the corresponding main ORFs predominantly occur in the same direction. Integration with 456 mass-spectrometry datasets confirms the presence of 603 small peptides at the protein level in humans and provides insights into the subcellular localization of these small proteins. This study provides a comprehensive atlas of high-confidence translated smORFs derived from primary human cells and tissues in order to provide a more complete understanding of the translated human genome.


Asunto(s)
Regulación de la Expresión Génica , Ribosomas , Genoma Humano/genética , Humanos , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , Proteínas/metabolismo , ARN/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
7.
Blood ; 139(20): 3040-3057, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34958665

RESUMEN

Impairment of normal hematopoiesis and leukemia progression are 2 well-linked processes during leukemia development and are controlled by the bone marrow (BM) niche. Extracellular matrix proteins, including laminin, are important BM niche components. However, their role in hematopoiesis regeneration and leukemia is unknown. Laminin α4 (Lama4), a major receptor-binding chain of several laminins, is altered in BM niches in mice with acute myeloid leukemia (AML). So far, the impact of Lama4 on leukemia progression remains unknown. We here report that Lama4 deletion in mice resulted in impaired hematopoiesis regeneration following irradiation-induced stress, which is accompanied by altered BM niche composition and inflammation. Importantly, in a transplantation-induced MLL-AF9 AML mouse model, we demonstrate accelerated AML progression and relapse in Lama4-/- mice. Upon AML exposure, Lama4-/- mesenchymal stem cells (MSCs) exhibited dramatic molecular alterations, including upregulation of inflammatory cytokines that favor AML growth. Lama4-/- MSCs displayed increased antioxidant activities and promoted AML stem cell proliferation and chemoresistance to cytarabine, which was accompanied by increased mitochondrial transfer from the MSCs to AML cells and reduced reactive oxygen species in AML cells in vitro. Similarly, we detected lower levels of reactive oxygen species in AML cells from Lama4-/- mice post-cytarabine treatment. Notably, LAMA4 inhibition or knockdown in human MSCs promoted human AML cell proliferation and chemoprotection. Together, our study for the first time demonstrates the critical role of Lama4 in impeding AML progression and chemoresistance. Targeting Lama4 signaling pathways may offer potential new therapeutic options for AML.


Asunto(s)
Laminina , Leucemia Mieloide Aguda , Animales , Citarabina/uso terapéutico , Resistencia a Antineoplásicos , Hematopoyesis/genética , Humanos , Laminina/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Células Madre Mesenquimatosas , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno
8.
Sci Rep ; 11(1): 20556, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654837

RESUMEN

Crb2 is a cell polarity-related type I transmembrane protein expressed in the apical membrane of podocytes. Knockdown of crb2 causes glomerular permeability defects in zebrafish, and its complete knockout causes embryonic lethality in mice. There are also reports of Crb2 mutations in patients with steroid-resistant nephrotic syndrome, although the precise mechanism is unclear. The present study demonstrated that podocyte-specific Crb2 knockout mice develop massive albuminuria and microhematuria 2-month after birth and focal segmental glomerulosclerosis and tubulointerstitial fibrosis with hemosiderin-laden macrophages at 6-month of age. Transmission and scanning electron microscopic studies demonstrated injury and foot process effacement of podocytes in 6-month aged podocyte-specific Crb2 knockout mice. The number of glomerular Wt1-positive cells and the expressions of Nphs2, Podxl, and Nphs1 were reduced in podocyte-specific Crb2 knockout mice compared to negative control mice. Human podocytes lacking CRB2 had significantly decreased F-actin positive area and were more susceptible to apoptosis than their wild-type counterparts. Overall, this study's results suggest that the specific deprivation of Crb2 in podocytes induces altered actin cytoskeleton reorganization associated with dysfunction and accelerated apoptosis of podocytes that ultimately cause focal segmental glomerulosclerosis.


Asunto(s)
Proteínas Portadoras/genética , Glomeruloesclerosis Focal y Segmentaria/genética , Proteínas de la Membrana/genética , Podocitos/ultraestructura , Animales , Células Cultivadas , Glomeruloesclerosis Focal y Segmentaria/sangre , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Ratones Noqueados
10.
ACS Synth Biol ; 10(3): 640-645, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33625849

RESUMEN

The combination of single-cell RNA sequencing with CRISPR inhibition/activation provides a high-throughput approach to simultaneously study the effects of hundreds if not thousands of gene perturbations in a single experiment. One recent development in CRISPR-based single-cell techniques introduces a feature barcoding technology that allows for the simultaneous capture of mRNA and guide RNA (gRNA) from the same cell. This is achieved by introducing a capture sequence, whose complement can be incorporated into each gRNA and that can be used to amplify these features prior to sequencing. However, because the technology is in its infancy, there is little information available on how such experimental parameters can be optimized. To overcome this, we varied the capture sequence, capture sequence position, and gRNA backbone to identify an optimal gRNA scaffold for CRISPR activation gene perturbation studies. We provide a report on our screening approach along with our observations and recommendations for future use.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Análisis de la Célula Individual/métodos , Células Madre Embrionarias Humanas , Humanos , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
J Mol Med (Berl) ; 99(6): 859-876, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33620517

RESUMEN

Not only in kidney glomerular physiological function but also glomerular pathology especially in diabetic condition, glomerular podocytes play pivotal roles. Therefore, it is important to increase our knowledge about the genes and proteins expressed in podocytes. Recently, we have identified a novel podocyte-expressed gene, R3h domain containing-like (R3hdml) and analyzed its function in vivo as well as in vitro. Transforming growth factor-ß (TGF-ß) signaling regulated the expression of R3hdml. And R3hdml inhibited p38 mitogen-activated protein kinase phosphorylation, which was induced by TGF-ß, leading to the amelioration of podocyte apoptosis. Furthermore, a lack of R3hdml in mice significantly worsened glomerular function in streptozotocin (STZ)-induced diabetes, while overexpression of R3hdml ameliorated albuminuria in STZ-induced diabetes. Our results surmise that the functional analyses of R3hdml may lead to the development of novel therapeutic strategies for diabetic nephropathy in the future. KEY MESSAGES: • A novel podocyte expressed protein R3h domain containing-like was identified. • R3HDML inhibits podocyte apoptosis by inhibiting TGF-ß-mediated p38 MAPK signaling. • Overexpression of R3HDML ameliorates albuminuria in STZ-induced diabetes mice. • R3HDML may prove to be a novel therapeutic strategy for diabetic nephropathy.


Asunto(s)
Biomarcadores , Membrana Basal Glomerular/metabolismo , Podocitos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Membrana Basal Glomerular/patología , Ratones , Podocitos/patología
13.
Nat Protoc ; 15(2): 694-711, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31942079

RESUMEN

The basal keratinocyte progenitor cells in cultured epithelial autografts (CEAs) regenerate human epidermis after transplantation, a curative therapy for severe burns and, recently, diseases with epidermal loss, such as junctional epidermolysis bullosa (EB). Although a culturing technique for skin keratinocytes was developed four decades ago, the xenogeneic nature of that conventional CEA culture system restricts its use to the treatment of critical and life-threatening cases, such as severe burns on >30% of total body surface area and EB. In the present protocol, we describe how to implement a defined, xeno-free culture system that supports long-term ex vivo expansion of functional human epidermal keratinocytes. Skin-specific basement membrane proteins called laminins play important roles in the maintenance of phenotypic integrity and in supporting the survival of keratinocytes that are adhered to them. This fully human keratinocyte culture system is 'regulatory friendly' and increases the potential of epithelial cellular therapy, which can be expanded to treat less severe burns and other skin defects, such as chronic diabetic wounds. It takes between 7 and 14 d to obtain an initial culture. Conservatively, a secondary culture from the primary culture can be expanded up to 20-fold within 4-5 d once cells reach confluency.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Epidermis/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Laminina/metabolismo , Células 3T3 , Animales , Membrana Basal/metabolismo , Células Nutrientes/citología , Humanos , Ratones
14.
J Am Soc Nephrol ; 31(2): 309-323, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31919106

RESUMEN

BACKGROUND: Several genetic susceptibility loci associated with diabetic nephropathy have been documented, but no causative variants implying novel pathogenetic mechanisms have been elucidated. METHODS: We carried out whole-genome sequencing of a discovery cohort of Finnish siblings with type 1 diabetes who were discordant for the presence (case) or absence (control) of diabetic nephropathy. Controls had diabetes without complications for 15-37 years. We analyzed and annotated variants at genome, gene, and single-nucleotide variant levels. We then replicated the associated variants, genes, and regions in a replication cohort from the Finnish Diabetic Nephropathy study that included 3531 unrelated Finns with type 1 diabetes. RESULTS: We observed protein-altering variants and an enrichment of variants in regions associated with the presence or absence of diabetic nephropathy. The replication cohort confirmed variants in both regulatory and protein-coding regions. We also observed that diabetic nephropathy-associated variants, when clustered at the gene level, are enriched in a core protein-interaction network representing proteins essential for podocyte function. These genes include protein kinases (protein kinase C isoforms ε and ι) and protein tyrosine kinase 2. CONCLUSIONS: Our comprehensive analysis of a diabetic nephropathy cohort of siblings with type 1 diabetes who were discordant for kidney disease points to variants and genes that are potentially causative or protective for diabetic nephropathy. This includes variants in two isoforms of the protein kinase C family not previously linked to diabetic nephropathy, adding support to previous hypotheses that the protein kinase C family members play a role in diabetic nephropathy and might be attractive therapeutic targets.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Nefropatías Diabéticas/genética , Secuenciación Completa del Genoma/métodos , Adolescente , Adulto , Animales , Niño , Preescolar , Diabetes Mellitus Tipo 1/genética , Femenino , Células HEK293 , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Proteína Quinasa C/fisiología , Hermanos , Adulto Joven , Pez Cebra
15.
Trends Cell Biol ; 29(12): 987-1000, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31703844

RESUMEN

Basement membrane laminins (LNs) have been shown to modulate cellular phenotypes and differentiation both in vitro and during organogenesis in vivo. At least 16 laminin isoforms are present in mammals, and most are available as recombinant proteins. Ubiquitous LN511 and LN521 promote the clonal derivation and expansion of pluripotent embryonic stem cells (ESCs), and, together with other highly cell type-specific laminins, they can support the differentiation of stem cells into, for example, cardiac muscle fibers, retinal pigmented epithelial (RPE) cells and photoreceptors, dopamine (DA) neurons, and skin keratinocytes. The laminin-supported differentiation methods are highly reproducible and can be made chemically defined and fully xeno-free - a prerequisite for preparing therapeutic stem cell-derived cells. In this review we describe recent work on the use of laminin-based cell culture matrices in stem cell differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Laminina/metabolismo , Organogénesis/fisiología , Células Madre Pluripotentes/citología , Animales , Humanos , Queratinocitos/citología , Miocitos Cardíacos/citología , Neuronas/citología , Células Fotorreceptoras de Vertebrados/citología , Epitelio Pigmentado de la Retina/citología , Nicho de Células Madre/fisiología
16.
J Thromb Haemost ; 17(8): 1384-1396, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31126000

RESUMEN

BACKGROUND: Scavenger receptors play a significant role in clearing aged proteins from the plasma, including the large glycoprotein coagulation factors von Willebrand factor (VWF) and factor VIII (FVIII). A large genome-wide association study meta-analysis has identified genetic variants in the gene SCARA5, which encodes the class A scavenger receptor SCARA5, as being associated with plasma levels of VWF and FVIII. OBJECTIVES: The ability of SCARA5 to regulate the clearance of VWF-FVIII was characterized. METHODS: VWF-FVIII interactions with SCARA5 were evaluated by solid phase binding assays and in vitro cell based assays. The influence of SCARA5 deficiency on VWF:Ag and half-life was assessed in a murine model. The expression pattern of SCARA5 and its colocalization with VWF was evaluated in human tissues. RESULTS: VWF and the VWF-FVIII complex bound to human recombinant SCARA5 in a dose- and calcium-dependent manner. SCARA5 expressing HEK 293T cells bound and internalized VWF and the VWF-FVIII complex into early endosomes. In vivo, SCARA5 deficiency had a modest influence on the half-life of human VWF. mRNA analysis and immunohistochemistry determined that human SCARA5 is expressed in kidney podocytes and the red pulp, white pulp, and marginal zone of the spleen. VWF was found to colocalize with SCARA5 expressed by littoral cells lining the red pulp of the human spleen. CONCLUSIONS: SCARA5 is an adhesive and endocytic receptor for VWF. In human tissues, SCARA5 is expressed by kidney podocytes and splenic littoral endothelial cells. SCARA5 may have a modest influence on VWF clearance in humans.


Asunto(s)
Endocitosis , Receptores Depuradores de Clase A/metabolismo , Bazo/metabolismo , Factor de von Willebrand/metabolismo , Animales , Factor VIII/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Podocitos/metabolismo , Unión Proteica , Receptores Depuradores de Clase A/genética , Bazo/citología
17.
Cell Rep ; 26(12): 3231-3245.e9, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893597

RESUMEN

Regeneration of injured human heart muscle is limited and an unmet clinical need. There are no methods for the reproducible generation of clinical-quality stem cell-derived cardiovascular progenitors (CVPs). We identified laminin-221 (LN-221) as the most likely expressed cardiac laminin. We produced it as human recombinant protein and showed that LN-221 promotes differentiation of pluripotent human embryonic stem cells (hESCs) toward cardiomyocyte lineage and downregulates pluripotency and teratoma-associated genes. We developed a chemically defined, xeno-free laminin-based differentiation protocol to generate CVPs. We show high reproducibility of the differentiation protocol using time-course bulk RNA sequencing developed from different hESC lines. Single-cell RNA sequencing of CVPs derived from hESC lines supported reproducibility and identified three main progenitor subpopulations. These CVPs were transplanted into myocardial infarction mice, where heart function was measured by echocardiogram and human heart muscle bundle formation was identified histologically. This method may provide clinical-quality cells for use in regenerative cardiology.


Asunto(s)
Laminina/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocardio/patología , Miocitos Cardíacos/patología , Células Madre Pluripotentes/patología , Células Madre Pluripotentes/trasplante , Trasplante de Células Madre
18.
Nat Commun ; 9(1): 4432, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-30377295

RESUMEN

The current expansion of autologous human keratinocytes to resurface severe wound defects still relies on murine feeder layer and calf serum in the cell culture system. Through our characterization efforts of the human skin basement membrane and murine feeder layer 3T3-J2, we identified two biologically relevant recombinant laminins-LN-511 and LN-421- as potential candidates to replace the murine feeder. Herein, we report a completely xeno-free and defined culture system utilizing these laminins which enables robust expansion of adult human skin keratinocytes. We demonstrate that our laminin system is comparable to the 3T3-J2 co-culture system in terms of basal markers' profile, colony-forming efficiency and the ability to form normal stratified epidermal structure in both in vitro and in vivo models. These results show that the proposed system may not only provide safer keratinocyte use in the clinics, but also facilitate the broader use of other cultured human epithelial cells in regenerative medicine.


Asunto(s)
Células Epidérmicas/citología , Queratinocitos/citología , Laminina/farmacología , Células 3T3 , Adulto , Animales , Membrana Basal/efectos de los fármacos , Membrana Basal/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Epidérmicas/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Queratinocitos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos
19.
PLoS One ; 13(8): e0202400, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30125302

RESUMEN

The evidence that gene mutations in the polarity determinant Crumbs homologs-2 (CRB2) cause congenital nephrotic syndrome suggests the functional importance of this gene product in podocyte development. Because another isoform, CRB3, was reported to repress the mechanistic/mammalian target of the rapamycin complex 1 (mTORC1) pathway, we examined the role of CRB2 function in developing podocytes in relation to mTORC1. In HEK-293 and MDCK cells constitutively expressing CRB2, we found that the protein localized to the apicolateral side of the cell plasma membrane and that this plasma membrane assembly required N-glycosylation. Confocal microscopy of the neonate mouse kidney revealed that both the tyrosine-phosphorylated form and non-phosphorylated form of CRB2 commence at the S-shaped body stage at the apicolateral side of podocyte precursor cells and move to foot processes in a capillary tuft pattern. The pattern of phosphorylated mTOR in developing podocytes was similar to that of CRB2 tyrosine phosphorylation. Additionally, the lack of a tyrosine phosphorylation site on CRB2 led to the reduced sensitivity of mTORC1 activation in response to energy starvation. CRB2 may play an important role in the mechanistic pathway of developing podocytes through tyrosine phosphorylation by associating with mTORC1 activation.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de la Membrana/metabolismo , Podocitos/metabolismo , Células Madre/metabolismo , Animales , Proteínas Portadoras/genética , Membrana Celular/genética , Perros , Glicosilación , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de la Membrana/genética , Ratones , Fosforilación/genética , Podocitos/citología , Células Madre/citología
20.
Nat Commun ; 9(1): 1031, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29531213

RESUMEN

Zika virus (ZIKV) is a flavivirus that can cause congenital disease and requires development of an effective long-term preventative strategy. A replicative ZIKV vaccine with properties similar to the yellow fever 17D (YF17D) live-attenuated vaccine (LAV) would be advantageous, as a single dose of YF17D produces lifelong immunity. However, a replicative ZIKV vaccine must also be safe from causing persistent organ infections. Here we report an approach to ZIKV LAV development. We identify a ZIKV variant that produces small plaques due to interferon (IFN)-restricted viral propagation and displays attenuated infection of endothelial cells. We show that these properties collectively reduce the risk of organ infections and vertical transmission in a mouse model but remain sufficiently immunogenic to prevent wild-type ZIKV infection. Our findings suggest a strategy for the development of a safe but efficacious ZIKV LAV.


Asunto(s)
Técnicas Inmunológicas , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/genética , Virus Zika/inmunología , Aedes/inmunología , Aedes/virología , Animales , Células Dendríticas/inmunología , Células Dendríticas/virología , Humanos , Ratones , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Virus Zika/crecimiento & desarrollo , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...