Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nano Lett ; 23(10): 4579-4586, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37154760

RESUMEN

Organic radicals have long been suggested as candidates for organic magnets and components in organic spintronic devices. Herein, we demonstrate spin current emission from an organic radical film via spin pumping at room temperature. We present the synthesis and the thin film preparation of a Blatter-type radical with outstanding stability and low roughness. These features enable the fabrication of a radical/ferromagnet bilayer, in which the spin current emission from the organic radical layer can be reversibly reduced when the ferromagnetic film is brought into simultaneous resonance with the radical. The results provide an experimental demonstration of a metal-free organic radical layer operating as a spin source, opening a new avenue for the development of purely organic spintronic devices and bridging the gap between potential and real applications.

3.
J Phys Chem Lett ; 13(18): 4000-4006, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35482607

RESUMEN

The Overhauser effect is unique among DNP mechanisms in that it requires the modulation of the electron-nuclear hyperfine interactions. While it dominates DNP in liquids and metals, where unpaired electrons are highly mobile, Overhauser DNP is possible in insulating solids if rapid structural modulations are linked to a modulation in hyperfine coupling. Herein, we report that Overhauser DNP can be triggered by the strategic addition of a methyl group, demonstrated here in a Blatter's radical. The rotation of the methyl group leads to a modulation of the hyperfine coupling to its protons, which in turn facilitates electron-nuclear cross-relaxation. Removal of the methyl protons, through deuteration, quenches the process, as does the reduction of the hyperfine coupling strength. This result suggests the possibility for the design of tailor-made Overhauser DNP polarizing agents for high-field MAS-DNP.

4.
J Org Chem ; 82(14): 7564-7575, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28628743

RESUMEN

Reacting N-aryliminophosphoranes with 1-(het)aroyl-2-aryldiazenes in preheated diphenyl ether at ca. 150-250 °C for 5-25 min affords in most cases the 1,3-diaryl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yls (aka Blatter radicals) in moderate to good yields. All new compounds are fully characterized, including EPR and CV studies for the radicals. Single-crystal X-ray structures of 1-benzoyl-2-(perfluorophenyl)diazene and 1-(perfluorophenyl)-3-phenyl-1,4-dihydrobenzo[e][1,2,4]triazinyl are also presented.

5.
Nat Commun ; 4: 1378, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23340418

RESUMEN

The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices.

6.
Nano Lett ; 10(5): 1549-53, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20377235

RESUMEN

Control of the local magnetic fields desirable for spintronics and quantum information technology is not well developed. Existing methods produce either moderately small local fields or one field orientation. We present designs of patterned magnetic elements that produce remanent fields of 50 mT (potentially 200 mT) confined to chosen, submicrometer regions in directions perpendicular to an external initializing field. A wide variety of magnetic-field profiles on nanometer scales can be produced with the option of applying electric fields, for example, to move a quantum dot between regions where the magnetic-field direction or strength is different. We have confirmed our modeling by measuring the fields in one design using electron holography.


Asunto(s)
Magnetismo/instrumentación , Nanotecnología/instrumentación , Campos Electromagnéticos , Diseño de Equipo , Análisis de Falla de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA