Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 322(3): E319-E329, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35156394

RESUMEN

DNA damage responses compete for cellular resources with metabolic pathways, but little is known about the metabolic consequences of impaired DNA replication, a process called replication stress. Here we characterized the metabolic consequences of DNA replication stress at endogenous DNA lesions by using mice with a disruption of Rev1, a translesion DNA polymerase specialized in the mutagenic replication of damaged DNA. Male and female Rev1 knockout (KO) mice were compared with wild-type (WT) mice and followed over time to study the natural course of body weight gain and glucose tolerance. Follow-up measurements were performed in female mice for in-depth metabolic characterization. Body weight and fat mass were only increased in female KO mice versus WT mice, whereas glucose intolerance and a reduction in lean mass were observed in both sexes. Female KO mice showed reduced locomotor activity while male KO mice showed increased activity as compared with their WT littermates. Further characterization of female mice revealed that lipid handling was unaffected by Rev1 deletion. An increased respiratory exchange ratio, combined with elevated plasma lactate levels and increased hepatic gluconeogenesis indicated problems with aerobic oxidation and increased reliance on anaerobic glycolysis. Supplementation with the NAD+ precursor nicotinamide riboside to stimulate aerobic respiration failed to restore the metabolic phenotype. In conclusion, replication stress at endogenous DNA lesions induces a complex metabolic phenotype, most likely initiated by muscular metabolic dysfunction and increased dependence on anaerobic glycolysis. Nicotinamide riboside supplementation after the onset of the metabolic impairment did not rescue this phenotype.NEW & NOTEWORTHY An increasing number of DNA lesions interferes with cellular replication leading to metabolic inflexibility. We utilized Rev1 knockout mice as a model for replication stress, and show a sex-dependent metabolic phenotype, with a pronounced reduction of lean mass and glucose tolerance. These data indicate that in obesity, we may end up in an infinite loop where metabolic disturbance promotes the formation of DNA lesions, which in turn interferes with cellular replication causing further metabolic disturbances.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Intolerancia a la Glucosa , Animales , Peso Corporal , ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Femenino , Glucosa , Intolerancia a la Glucosa/genética , Masculino , Ratones , Ratones Noqueados
2.
Sci Rep ; 8(1): 4245, 2018 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-29511198

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

3.
Sci Rep ; 7(1): 12480, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28970491

RESUMEN

Nucleic acids, which constitute the genetic material of all organisms, are continuously exposed to endogenous and exogenous damaging agents, representing a significant challenge to genome stability and genome integrity over the life of a cell or organism. Unrepaired DNA lesions, such as single- and double-stranded DNA breaks (SSBs and DSBs), and single-stranded gaps can block progression of the DNA replication fork, causing replicative stress and/or cell cycle arrest. However, translesion synthesis (TLS) DNA polymerases, such as Rev1, have the ability to bypass some DNA lesions, which can circumvent the process leading to replication fork arrest and minimize replicative stress. Here, we show that Rev1-deficiency in mouse embryo fibroblasts or mouse liver tissue is associated with replicative stress and mitochondrial dysfunction. In addition, Rev1-deficiency is associated with high poly(ADP) ribose polymerase 1 (PARP1) activity, low endogenous NAD+, low expression of SIRT1 and PGC1α and low adenosine monophosphate (AMP)-activated kinase (AMPK) activity. We conclude that replication stress via Rev1-deficiency contributes to metabolic stress caused by compromized mitochondrial function via the PARP-NAD+-SIRT1-PGC1α axis.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mitocondrias Hepáticas/genética , Nucleotidiltransferasas/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Poli(ADP-Ribosa) Polimerasas/genética , Sirtuina 1/genética , Animales , ADN Polimerasa Dirigida por ADN , Embrión de Mamíferos , Femenino , Fibroblastos/citología , Fibroblastos/enzimología , Regulación de la Expresión Génica , Hígado/enzimología , Masculino , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Noqueados , Mitocondrias Hepáticas/enzimología , NAD/metabolismo , Nucleotidiltransferasas/deficiencia , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Cultivo Primario de Células , Transducción de Señal , Sirtuina 1/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
4.
Blood ; 130(13): 1523-1534, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28827409

RESUMEN

Endogenous DNA damage is causally associated with the functional decline and transformation of stem cells that characterize aging. DNA lesions that have escaped DNA repair can induce replication stress and genomic breaks that induce senescence and apoptosis. It is not clear how stem and proliferating cells cope with accumulating endogenous DNA lesions and how these ultimately affect the physiology of cells and tissues. Here we have addressed these questions by investigating the hematopoietic system of mice deficient for Rev1, a core factor in DNA translesion synthesis (TLS), the postreplicative bypass of damaged nucleotides. Rev1 hematopoietic stem and progenitor cells displayed compromised proliferation, and replication stress that could be rescued with an antioxidant. The additional disruption of Xpc, essential for global-genome nucleotide excision repair (ggNER) of helix-distorting nucleotide lesions, resulted in the perinatal loss of hematopoietic stem cells, progressive loss of bone marrow, and fatal aplastic anemia between 3 and 4 months of age. This was associated with replication stress, genomic breaks, DNA damage signaling, senescence, and apoptosis in bone marrow. Surprisingly, the collapse of the Rev1Xpc bone marrow was associated with progressive mitochondrial dysfunction and consequent exacerbation of oxidative stress. These data reveal that, to protect its genomic and functional integrity, the hematopoietic system critically depends on the combined activities of repair and replication of helix-distorting oxidative nucleotide lesions by ggNER and Rev1-dependent TLS, respectively. The error-prone nature of TLS may provide mechanistic understanding of the accumulation of mutations in the hematopoietic system upon aging.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Sistema Hematopoyético/fisiología , Estrés Oxidativo , Animales , Apoptosis , Médula Ósea/patología , Proliferación Celular , Senescencia Celular/genética , ADN Polimerasa Dirigida por ADN , Genoma , Células Madre Hematopoyéticas/patología , Ratones , Nucleotidiltransferasas
7.
Nat Commun ; 6: 7199, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-26068067

RESUMEN

Möbius syndrome (MBS) is a neurological disorder that is characterized by paralysis of the facial nerves and variable other congenital anomalies. The aetiology of this syndrome has been enigmatic since the initial descriptions by von Graefe in 1880 and by Möbius in 1888, and it has been debated for decades whether MBS has a genetic or a non-genetic aetiology. Here, we report de novo mutations affecting two genes, PLXND1 and REV3L in MBS patients. PLXND1 and REV3L represent totally unrelated pathways involved in hindbrain development: neural migration and DNA translesion synthesis, essential for the replication of endogenously damaged DNA, respectively. Interestingly, analysis of Plxnd1 and Rev3l mutant mice shows that disruption of these separate pathways converge at the facial branchiomotor nucleus, affecting either motoneuron migration or proliferation. The finding that PLXND1 and REV3L mutations are responsible for a proportion of MBS patients suggests that de novo mutations in other genes might account for other MBS patients.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Síndrome de Mobius/genética , Mutación , Animales , Daño del ADN , Exoma , Heterocigoto , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana , Ratones , Ratones Mutantes
8.
J Cell Biol ; 209(1): 33-46, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25869665

RESUMEN

In addition to correcting mispaired nucleotides, DNA mismatch repair (MMR) proteins have been implicated in mutagenic, cell cycle, and apoptotic responses to agents that induce structurally aberrant nucleotide lesions. Here, we investigated the mechanistic basis for these responses by exposing cell lines with single or combined genetic defects in nucleotide excision repair (NER), postreplicative translesion synthesis (TLS), and MMR to low-dose ultraviolet light during S phase. Our data reveal that the MMR heterodimer Msh2/Msh6 mediates the excision of incorrect nucleotides that are incorporated by TLS opposite helix-distorting, noninstructive DNA photolesions. The resulting single-stranded DNA patches induce canonical Rpa-Atr-Chk1-mediated checkpoints and, in the next cell cycle, collapse to double-stranded DNA breaks that trigger apoptosis. In conclusion, a novel MMR-related DNA excision repair pathway controls TLS a posteriori, while initiating cellular responses to environmentally relevant densities of genotoxic lesions. These results may provide a rationale for the colorectal cancer tropism in Lynch syndrome, which is caused by inherited MMR gene defects.


Asunto(s)
Daño del ADN , Reparación de la Incompatibilidad de ADN , Animales , Apoptosis , Línea Celular , Proteínas de Unión al ADN/fisiología , Células Madre Embrionarias/fisiología , Epistasis Genética , Humanos , Ratones de la Cepa 129 , Proteína 2 Homóloga a MutS/fisiología , Mutagénesis
9.
DNA Repair (Amst) ; 29: 56-64, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25655219

RESUMEN

Most spontaneous and DNA damage-induced nucleotide substitutions in eukaryotes depend on translesion synthesis polymerases Rev1 and Pol ζ, the latter consisting of the catalytic subunit Rev3 and the accessory protein Rev7. Here we review the regulation, and the biochemical and cellular functions, of Rev1/Pol ζ-dependent translesion synthesis. These are correlated with phenotypes of mouse models with defects in Rev1, Rev3 or Rev7. The data indicate that Rev1/Pol ζ-mediated translesion synthesis is important for adaptive immunity while playing paradoxical roles in oncogenesis. On the other hand, by enabling the replication of endogenously damaged templates, Rev1/Pol ζ -dependent translesion synthesis protects stem cells, thereby preventing features of ageing. In conclusion, Rev1/Pol ζ-dependent translesion synthesis at DNA helix-distorting nucleotide lesions orchestrates pleiotropic responses that determine organismal fitness and disease.


Asunto(s)
Reparación del ADN/fisiología , Replicación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Inestabilidad Genómica , Mutagénesis , Animales , ADN/metabolismo , Enfermedad/genética , Proteínas Mad2/metabolismo , Ratones , Nucleotidiltransferasas/metabolismo
10.
Nucleic Acids Res ; 42(7): 4406-13, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24464993

RESUMEN

Rev3, the catalytic subunit of DNA polymerase ζ, is essential for translesion synthesis of cytotoxic DNA photolesions, whereas the Rev1 protein plays a noncatalytic role in translesion synthesis. Here, we reveal that mammalian Rev3(-/-) and Rev1(-/-) cell lines additionally display a nucleotide excision repair (NER) defect, specifically during S phase. This defect is correlated with the normal recruitment but protracted persistence at DNA damage sites of factors involved in an early stage of NER, while repair synthesis is affected. Remarkably, the NER defect becomes apparent only at 2 h post-irradiation indicating that Rev3 affects repair synthesis only indirectly, rather than performing an enzymatic role in NER. We provide evidence that the NER defect is caused by scarceness of Replication protein A (Rpa) available to NER, resulting from its sequestration at stalled replication forks. Also the induction of replicative stress using hydroxyurea precludes the accumulation of Rpa at photolesion sites, both in Rev3(-/-) and in wild-type cells. These data support a model in which the limited Rpa pool coordinates replicative stress and NER, resulting in increased cytotoxicity of ultraviolet light when replicative stress exceeds a threshold.


Asunto(s)
Reparación del ADN , Replicación del ADN , Proteína de Replicación A/metabolismo , Animales , Línea Celular , Proliferación Celular , ADN Polimerasa Dirigida por ADN/genética , Ratones , Transcripción Genética , Rayos Ultravioleta/efectos adversos
11.
Eur J Immunol ; 43(10): 2765-70, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23857323

RESUMEN

Somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes are initiated by the enzymatic deamination of cytosine (C) to uracil (U). Uracil-DNA-glycosylase (Ung2) converts uracils into apyrimidinic (AP) sites, which is essential for the generation of transversions (TVs) at G/C basepairs during SHM and for efficient DNA break formation during CSR. Besides Ung2, the mismatch repair protein Msh2 and the translesion synthesis (TLS) DNA polymerase (Pol) Rev1 are implicated in SHM and CSR. To further unravel the role of Rev1, we studied WT, Rev1-deficient, Msh2-deficient, and Rev1, Msh2 double-deficient B cells. Loss of Rev1 only slightly reduced CSR. During SHM G/C to C/G TVs are generated in both Ung2- and Ung+Msh2-dependent fashions. We found that Rev1 is essential for the Msh2-independent generation of these TVs downstream of Ung2-induced AP sites. In the Ung+Msh2 hybrid pathway, Rev1 is not essential and can be substituted by an alternative TLS Pol, especially when Rev1 is lacking.


Asunto(s)
Linfocitos B/inmunología , Citosina/metabolismo , Roturas del ADN , Guanina/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Nucleotidiltransferasas/metabolismo , Hipermutación Somática de Inmunoglobulina/genética , Uracil-ADN Glicosidasa/metabolismo , Animales , Composición de Base , Células Cultivadas , ADN Polimerasa Dirigida por ADN , Desaminación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleotidiltransferasas/genética , Uracilo/metabolismo
12.
Proc Natl Acad Sci U S A ; 106(51): 21836-41, 2009 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-20007784

RESUMEN

The induction of skin cancer involves both mutagenic and proliferative responses of the epidermis to ultraviolet (UV) light. It is believed that tumor initiation requires the mutagenic replication of damaged DNA by translesion synthesis (TLS) pathways. The mechanistic basis for the induction of proliferation, providing tumor promotion, is poorly understood. Here, we have investigated the role of TLS in the initiation and promotion of skin carcinogenesis, using a sensitive nucleotide excision repair-deficient mouse model that carries a hypomorphic allele of the error-prone TLS gene Rev1. Despite a defect in UV-induced mutagenesis, skin carcinogenesis was accelerated in these mice. This paradoxical phenotype was caused by the induction of inflammatory hyperplasia of the mutant skin that provides strong tumor promotion. The induction of hyperplasia was associated with mild and transient replicational stress of the UV-damaged genome, triggering DNA damage signaling and senescence. The concomitant expression of Interleukin-6 (IL-6) is in agreement with an executive role for IL-6 and possibly other cytokines in the autocrine induction of senescence and the paracrine induction of inflammatory hyperplasia. In conclusion, error-prone TLS suppresses tumor-promoting activities of UV light, thereby controlling skin carcinogenesis.


Asunto(s)
Daño del ADN , Replicación del ADN , Alelos , Animales , Reparación del ADN , Interleucina-6/genética , Interleucina-6/fisiología , Ratones , Modelos Animales , Neoplasias Inducidas por Radiación/genética , Neoplasias Cutáneas/genética , Rayos Ultravioleta
13.
DNA Repair (Amst) ; 8(12): 1444-51, 2009 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-19783229

RESUMEN

DNA polymerase zeta is believed to be an essential constituent of DNA damage tolerance, comprising several pathways that allow the replication of DNA templates containing unrepaired damage. We wanted to better define the role of polymerase zeta in DNA damage tolerance in mammalian cells. To this aim we have investigated replication of ultraviolet light-damaged DNA templates in mouse embryonic fibroblasts deficient for Rev3, the catalytic subunit of polymerase zeta. We found that Rev3 is important for a post-replication repair pathway of helix-distorting [6-4]pyrimidine-pyrimidone photoproducts and, to a lesser extent, of cyclobutane pyrimidine dimers. Unlike its partner Rev1, Rev3 appears not to be involved in an immediate translesion synthesis pathway at a stalled replication fork. The deficiency of Rev3(-/-) MEFs in post-replication repair of different photoproducts contributes to the extreme sensitivity of these cells to UV light.


Asunto(s)
Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/metabolismo , Rayos Ultravioleta , Animales , Línea Celular , Replicación del ADN , ADN Polimerasa Dirigida por ADN/deficiencia , Ratones , Ratones Endogámicos C57BL
15.
Mol Pharmacol ; 76(4): 927-34, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19641035

RESUMEN

Temozolomide and fotemustine, representing methylating and chloroethylating agents, respectively, are used in the treatment of glioma and malignant melanoma. Because chemoresistance of these tumors is a common phenomenon, identification of the underlying mechanisms is needed. Here we show that Rev3L, the catalytic subunit of the translesion DNA polymerase zeta, mediates resistance to both temozolomide and fotemustine. Rev3L knockout cells are hypersensitive to both agents. It is remarkable that cells heterozygous for Rev3L showed an intermediate sensitivity. Rev3L is not involved in the tolerance of the toxic O6-methylguanine lesion. However, a possible role of Rev3L in the tolerance of O6-chloroethylguanine or the subsequently formed N1-guanine-N3-cytosine interstrand cross-link is shown. Rev3L had no influence on base excision repair (BER) of the N-alkylation lesions but is very likely to be involved in the tolerance of N-alkylations or apurinic/apyrimidinic sites originating from them. We also show that Rev3L exerts its protective effect in replicating cells and that loss of Rev3L leads to a significant increase in DNA double-strand breaks after temozolomide and fotemustine treatment. These data show that Rev3L contributes to temozolomide and fotemustine resistance, thus acting in concert with O6-methylguanine-DNA methyltransferase, BER, mismatch repair, and double-strand break repair in defense against simple alkylating anticancer drugs.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Daño del ADN , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Dacarbazina/análogos & derivados , Compuestos de Nitrosourea/farmacología , Compuestos Organofosforados/farmacología , Animales , Antineoplásicos Alquilantes/efectos adversos , Apoptosis/efectos de los fármacos , Línea Celular , Dacarbazina/efectos adversos , Dacarbazina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Citometría de Flujo , Ratones , Ratones Noqueados , Microscopía Fluorescente , Compuestos de Nitrosourea/efectos adversos , Compuestos Organofosforados/efectos adversos , Temozolomida
16.
Mol Ther ; 17(8): 1373-80, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19471249

RESUMEN

A substantial fraction of sporadic and inherited colorectal and endometrial cancers in humans is deficient in DNA mismatch repair (MMR). These cancers are characterized by length alterations in ubiquitous simple sequence repeats, a phenotype called microsatellite instability. Here we have exploited this phenotype by developing a novel approach for the highly selective gene therapy of MMR-deficient tumors. To achieve this selectivity, we mutated the VP22FCU1 suicide gene by inserting an out-of-frame microsatellite within its coding region. We show that in a significant fraction of microsatellite-instable (MSI) cells carrying the mutated suicide gene, full-length protein becomes expressed within a few cell doublings, presumably resulting from a reverting frameshift within the inserted microsatellite. Treatment of these cells with the innocuous prodrug 5-fluorocytosine (5-FC) induces strong cytotoxicity and we demonstrate that this owes to multiple bystander effects conferred by the suicide gene/prodrug combination. In a mouse model, MMR-deficient tumors that contained the out-of-frame VP22FCU1 gene displayed strong remission after treatment with 5-FC, without any obvious adverse systemic effects to the mouse. By virtue of its high selectivity and potency, this conditional enzyme/prodrug combination may hold promise for the treatment or prevention of MMR-deficient cancer in humans.


Asunto(s)
Antimetabolitos/farmacología , Flucitosina/farmacología , Genes Transgénicos Suicidas/fisiología , Inestabilidad de Microsatélites/efectos de los fármacos , Animales , Línea Celular , Línea Celular Tumoral , Citosina Desaminasa/genética , Citosina Desaminasa/fisiología , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Mutación del Sistema de Lectura/genética , Genes Transgénicos Suicidas/genética , Humanos , Ratones , Neoplasias/genética , Neoplasias/terapia , Pentosiltransferasa/genética , Pentosiltransferasa/fisiología , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/fisiología
17.
Mol Cell Biol ; 29(11): 3113-23, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19332561

RESUMEN

The Y family DNA polymerase Rev1 has been proposed to play a regulatory role in the replication of damaged templates. To elucidate the mechanism by which Rev1 promotes DNA damage bypass, we have analyzed the progression of replication on UV light-damaged DNA in mouse embryonic fibroblasts that contain a defined deletion in the N-terminal BRCT domain of Rev1 or that are deficient for Rev1. We provide evidence that Rev1 plays a coordinating role in two modes of DNA damage bypass, i.e., an early and a late pathway. The cells carrying the deletion in the BRCT domain are deficient for the early pathway, reflecting a role of the BRCT domain of Rev1 in mutagenic translesion synthesis. Rev1-deficient cells display a defect in both modes of DNA damage bypass. Despite the persistent defect in the late replicational bypass of fork-blocking (6-4)pyrimidine-pyrimidone photoproducts, overall replication is not strongly affected by Rev1 deficiency. This results in almost completely replicated templates that contain gaps encompassing the photoproducts. These gaps are inducers of DNA damage signaling leading to an irreversible G(2) arrest. Our results corroborate a model in which Rev1-mediated DNA damage bypass at postreplicative gaps quenches irreversible DNA damage responses.


Asunto(s)
Daño del ADN , Fibroblastos/enzimología , Nucleotidiltransferasas/química , Nucleotidiltransferasas/metabolismo , Animales , ADN/metabolismo , ADN Polimerasa Dirigida por ADN , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/efectos de la radiación , Fase G2/efectos de la radiación , Ratones , Mutación/genética , Nucleotidiltransferasas/deficiencia , Estructura Terciaria de Proteína , Dímeros de Pirimidina/metabolismo , Fase S/efectos de la radiación , Transducción de Señal/efectos de la radiación , Rayos Ultravioleta
18.
J Exp Med ; 203(2): 319-23, 2006 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-16476771

RESUMEN

Somatic hypermutation of Ig genes enables B cells of the germinal center to generate high-affinity immunoglobulin variants. Key intermediates in somatic hypermutation are deoxyuridine lesions, introduced by activation-induced cytidine deaminase. These lesions can be processed further to abasic sites by uracil DNA glycosylase. Mutagenic replication of deoxyuridine, or of its abasic derivative, by translesion synthesis polymerases is hypothesized to underlie somatic hypermutation. Rev1 is a translesion synthesis polymerase that in vitro incorporates uniquely deoxycytidine opposite deoxyuridine and abasic residues. To investigate a role of Rev1 in mammalian somatic hypermutation we have generated mice deficient for Rev1. Although Rev1-/- mice display transient growth retardation, proliferation of Rev1-/- LPS-stimulated B cells is indistinguishable from wild-type cells. In mutated Ig genes from Rev1-/- mice, C to G transversions were virtually absent in the nontranscribed (coding) strand and reduced in the transcribed strand. This defect is associated with an increase of A to T, C to A, and T to C substitutions. These results indicate that Rev1 incorporates deoxycytidine residues, most likely opposite abasic nucleotides, during somatic hypermutation. In addition, loss of Rev1 causes compensatory increase in mutagenesis by other translesion synthesis polymerases.


Asunto(s)
Desoxicitidina/genética , Genes de Inmunoglobulinas , Guanina , Nucleotidiltransferasas/deficiencia , Mutación Puntual , Hipermutación Somática de Inmunoglobulina/genética , Animales , Linfocitos B/enzimología , Linfocitos B/metabolismo , ADN Polimerasa Dirigida por ADN , Desoxicitidina/metabolismo , Guanina/metabolismo , Inmunoglobulina D/genética , Inmunoglobulina M/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleotidiltransferasas/genética , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo
19.
Nucleic Acids Res ; 33(1): 356-65, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15653636

RESUMEN

Rev1 is a deoxycytidyl transferase associated with DNA translesion synthesis (TLS). In addition to its catalytic domain, Rev1 possesses a so-called BRCA1 C-terminal (BRCT) domain. Here, we describe cells and mice containing a targeted deletion of this domain. Rev1(B/B) mice are healthy, fertile and display normal somatic hypermutation. Rev1(B/B) cells display an elevated spontaneous frequency of intragenic deletions at Hprt. In addition, these cells were sensitized to exogenous DNA damages. Ultraviolet-C (UV-C) light induced a delayed progression through late S and G2 phases of the cell cycle and many chromatid aberrations, specifically in a subset of mutant cells, but not enhanced sister chromatid exchanges (SCE). UV-C-induced mutagenesis was reduced and mutations at thymidine-thymidine dimers were absent in Rev1(B/B) cells, the opposite phenotype of UV-C-exposed cells from XP-V patients, lacking TLS polymerase eta. This suggests that the enhanced UV-induced mutagenesis in XP-V patients may depend on error-prone Rev1-dependent TLS. Together, these data indicate a regulatory role of the Rev1 BRCT domain in TLS of a limited spectrum of endogenous and exogenous nucleotide damages during a defined phase of the cell cycle.


Asunto(s)
Daño del ADN , Replicación del ADN , Nucleotidiltransferasas/química , Animales , Proteína BRCA1/química , Ciclo Celular/efectos de la radiación , Aberraciones Cromosómicas , ADN/biosíntesis , ADN Polimerasa Dirigida por ADN , Embrión de Mamíferos/citología , Ratones , Mutagénesis , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Estructura Terciaria de Proteína , Intercambio de Cromátides Hermanas , Células Madre/citología , Células Madre/efectos de la radiación , Células Madre/ultraestructura , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...